Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257608

RESUMEN

Deep learning has rapidly increased in popularity, leading to the development of perception solutions for autonomous driving. The latter field leverages techniques developed for computer vision in other domains for accomplishing perception tasks such as object detection. However, the black-box nature of deep neural models and the complexity of the autonomous driving context motivates the study of explainability in these models that perform perception tasks. Moreover, this work explores explainable AI techniques for the object detection task in the context of autonomous driving. An extensive and detailed comparison is carried out between gradient-based and perturbation-based methods (e.g., D-RISE). Moreover, several experimental setups are used with different backbone architectures and different datasets to observe the influence of these aspects in the explanations. All the techniques explored consist of saliency methods, making their interpretation and evaluation primarily visual. Nevertheless, numerical assessment methods are also used. Overall, D-RISE and guided backpropagation obtain more localized explanations. However, D-RISE highlights more meaningful regions, providing more human-understandable explanations. To the best of our knowledge, this is the first approach to obtaining explanations focusing on the regression of the bounding box coordinates.

2.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276336

RESUMEN

Object detection is a crucial component of the perception system in autonomous driving. However, the road scene presents a highly intricate environment where the visibility and characteristics of traffic targets are susceptible to attenuation and loss due to various complex road scenarios such as lighting conditions, weather conditions, time of day, background elements, and traffic density. Nevertheless, the current object detection network must exhibit more learning capabilities when detecting such targets. This also exacerbates the loss of features during the feature extraction and fusion process, significantly compromising the network's detection performance on traffic targets. This paper presents a novel methodology by which to overcome the concerns above, namely HRYNet. Firstly, a dual fusion gradual pyramid structure (DFGPN) is introduced, which employs a two-stage gradient fusion strategy to enhance the generation of more comprehensive multi-scale high-level semantic information, strengthen the interconnection between non-adjacent feature layers, and reduce the information gap that exists between them. HRYNet introduces an anti-interference feature extraction module, the residual multi-head self-attention mechanism (RMA). RMA enhances the target information by implementing a characteristic channel weighting policy, thereby reducing background interference and improving the attention capability of the network. Finally, the detection performance of HRYNet was evaluated by utilizing three datasets: the horizontally collected dataset BDD1000K, the UAV high-altitude dataset Visdrone, and a custom dataset. Experimental results demonstrate that HRYNet achieves a higher mAP_0.5 compared with YOLOv8s on the three datasets, with increases of 10.8%, 16.7%, and 5.5%, respectively. To optimize HRYNet for mobile devices, this study presents Lightweight HRYNet (LHRYNet), which effectively reduces the number of model parameters by 2 million. The results demonstrate that LHRYNet outperforms YOLOv8s in terms of mAP_0.5, with improvements of 6.7%, 10.9%, and 2.5% observed on the three datasets, respectively.

3.
Sensors (Basel) ; 24(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38400336

RESUMEN

By precisely controlling the distance between two train sets, virtual coupling (VC) enables flexible coupling and decoupling in urban rail transit. However, relying on train-to-train communication for obtaining the train distance can pose a safety risk in case of communication malfunctions. In this paper, a distance-estimation framework based on monocular vision is proposed. First, key structure features of the target train are extracted by an object-detection neural network, whose strategies include an additional detection head in the feature pyramid, labeling of object neighbor areas, and semantic filtering, which are utilized to improve the detection performance for small objects. Then, an optimization process based on multiple key structure features is implemented to estimate the distance between the two train sets in VC. For the validation and evaluation of the proposed framework, experiments were implemented on Beijing Subway Line 11. The results show that for train sets with distances between 20 m and 100 m, the proposed framework can achieve a distance estimation with an absolute error that is lower than 1 m and a relative error that is lower than 1.5%, which can be a reliable backup for communication-based VC operations.

4.
Sensors (Basel) ; 24(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38610277

RESUMEN

The accurate prediction of the future trajectories of traffic participants is crucial for enhancing the safety and decision-making capabilities of autonomous vehicles. Modeling social interactions among agents and revealing the inherent relationships is crucial for accurate trajectory prediction. In this context, we propose a goal-guided and interaction-aware state refinement graph attention network (SRGAT) for multi-agent trajectory prediction. This model effectively integrates high-precision map data and dynamic traffic states and captures long-term temporal dependencies through the Transformer network. Based on these dependencies, it generates multiple potential goals and Points of Interest (POIs). Through its dual-branch, multimodal prediction approach, the model not only proposes various plausible future trajectories associated with these POIs, but also rigorously assesses the confidence levels of each trajectory. This goal-oriented strategy enables SRGAT to accurately predict the future movement trajectories of other vehicles in complex traffic scenarios. Tested on the Argoverse and nuScenes datasets, SRGAT surpasses existing algorithms in key performance metrics by adeptly integrating past trajectories and current context. This goal-guided approach not only enhances long-term prediction accuracy, but also ensures its reliability, demonstrating a significant advancement in trajectory forecasting.

5.
Sensors (Basel) ; 24(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38793942

RESUMEN

Autonomous driving, as a pivotal technology in modern transportation, is progressively transforming the modalities of human mobility. In this domain, vehicle detection is a significant research direction that involves the intersection of multiple disciplines, including sensor technology and computer vision. In recent years, many excellent vehicle detection methods have been reported, but few studies have focused on summarizing and analyzing these algorithms. This work provides a comprehensive review of existing vehicle detection algorithms and discusses their practical applications in the field of autonomous driving. First, we provide a brief description of the tasks, evaluation metrics, and datasets for vehicle detection. Second, more than 200 classical and latest vehicle detection algorithms are summarized in detail, including those based on machine vision, LiDAR, millimeter-wave radar, and sensor fusion. Finally, this article discusses the strengths and limitations of different algorithms and sensors, and proposes future trends.

6.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794039

RESUMEN

In the evolving landscape of autonomous driving technology, Light Detection and Ranging (LiDAR) sensors have emerged as a pivotal instrument for enhancing environmental perception. They can offer precise, high-resolution, real-time 3D representations around a vehicle, and the ability for long-range measurements under low-light conditions. However, these advantages come at the cost of the large volume of data generated by the sensor, leading to several challenges in transmission, processing, and storage operations, which can be currently mitigated by employing data compression techniques to the point cloud. This article presents a survey of existing methods used to compress point cloud data for automotive LiDAR sensors. It presents a comprehensive taxonomy that categorizes these approaches into four main groups, comparing and discussing them across several important metrics.

7.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38676168

RESUMEN

This paper proposes a learning-based control approach for autonomous vehicles. An explicit Takagi-Sugeno (TS) controller is learned using input and output data from a preexisting controller, employing the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. At the same time, the vehicle model is identified in the TS model form for closed-loop stability assessment using Lyapunov theory and LMIs. The proposed approach is applied to learn the control law from an MPC controller, thus avoiding the use of online optimization. This reduces the computational burden of the control loop and facilitates real-time implementation. Finally, the proposed approach is assessed through simulation using a small-scale autonomous racing car.

8.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000895

RESUMEN

Background: High-definition maps can provide necessary prior data for autonomous driving, as well as the corresponding beyond-line-of-sight perception, verification and positioning, dynamic planning, and decision control. It is a necessary element to achieve L4/L5 unmanned driving at the current stage. However, currently, high-definition maps still have problems such as a large amount of data, a lot of data redundancy, and weak data correlation, which make autonomous driving fall into difficulties such as high data query difficulty and low timeliness. In order to optimize the data quality of high-definition maps, enhance the degree of data correlation, and ensure that they better assist vehicles in safe driving and efficient passage in the autonomous driving scenario, it is necessary to clarify the information system thinking of high-definition maps, propose a complete and accurate model, determine the content and functions of each level of the model, and continuously improve the information system model. Objective: The study aimed to put forward a complete and accurate high-definition map information system model and elaborate in detail the content and functions of each component in the data logic structure of the system model. Methods: Through research methods such as the modeling method and literature research method, we studied the high-definition map information system model in the autonomous driving scenario and explored the key technologies therein. Results: We put forward a four-layer integrated high-definition map information system model, elaborated in detail the content and functions of each component (map, road, vehicle, and user) in the data logic structure of the model, and also elaborated on the mechanism of the combined information of each level of the model to provide services in perception, positioning, decision making, and control for autonomous driving vehicles. This article also discussed two key technologies that can support autonomous driving vehicles to complete path planning, navigation decision making, and vehicle control in different autonomous driving scenarios. Conclusions: The four-layer integrated high-definition map information model proposed by this research institute has certain application feasibility and can provide references for the standardized production of high-definition maps, the unification of information interaction relationships, and the standardization of map data associations.

9.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39066157

RESUMEN

Visual object tracking is an important technology in camera-based sensor networks, which has a wide range of practicability in auto-drive systems. A transformer is a deep learning model that adopts the mechanism of self-attention, and it differentially weights the significance of each part of the input data. It has been widely applied in the field of visual tracking. Unfortunately, the security of the transformer model is unclear. It causes such transformer-based applications to be exposed to security threats. In this work, the security of the transformer model was investigated with an important component of autonomous driving, i.e., visual tracking. Such deep-learning-based visual tracking is vulnerable to adversarial attacks, and thus, adversarial attacks were implemented as the security threats to conduct the investigation. First, adversarial examples were generated on top of video sequences to degrade the tracking performance, and the frame-by-frame temporal motion was taken into consideration when generating perturbations over the depicted tracking results. Then, the influence of perturbations on performance was sequentially investigated and analyzed. Finally, numerous experiments on OTB100, VOT2018, and GOT-10k data sets demonstrated that the executed adversarial examples were effective on the performance drops of the transformer-based visual tracking. White-box attacks showed the highest effectiveness, where the attack success rates exceeded 90% against transformer-based trackers.

10.
Sensors (Basel) ; 24(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203163

RESUMEN

Given that sensor-based perception systems are utilized in autonomous vehicle applications, it is essential to validate such systems to ensure their robustness before they are deployed. In this study, we propose a comprehensive simulation-based process to verify and enhance the robustness of sensor-based perception systems in relation to corruption. Firstly, we introduce a methodology and scenario-based corruption generation tool for creating a variety of simulated test scenarios. These scenarios can effectively mimic real-world traffic environments, with a focus on corruption types that are related to safety concerns. An effective corruption similarity filtering algorithm is then proposed to eliminate corruption types with high similarity and identify representative corruption types that encompass all considered corruption types. As a result, we can create efficient test scenarios for corruption-related robustness with reduced testing time and comprehensive scenario coverage. Subsequently, we conduct vulnerability analysis on object detection models to identify weaknesses and create an effective training dataset for enhancing model vulnerability. This improves the object detection models' tolerance to weather and noise-related corruptions, ultimately enhancing the robustness of the perception system. We use case studies to demonstrate the feasibility and effectiveness of the proposed procedures for verifying and enhancing robustness. Furthermore, we investigate the impact of various "similarity overlap threshold" parameter settings on scenario coverage, effectiveness, scenario complexity (size of training and testing datasets), and time costs.

11.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257577

RESUMEN

As technology advances in almost all areas of life, many companies and researchers are working to develop fully autonomous vehicles. Such level 5 autonomous driving, unlike levels 0 to 4, is a driverless vehicle stage and so the leap from level 4 to level 5 autonomous driving requires much more research and experimentation. For autonomous vehicles to safely drive in complex environments, autonomous cars should ensure end-to-end delay deadlines of sensor systems and car-controlling algorithms including machine learning modules, which are known to be very computationally intensive. To address this issue, we propose a new framework, i.e., an environment-driven approach for autonomous cars. Specifically, we identify environmental factors that we cannot control at all, and controllable internal factors such as sensing frequency, image resolution, prediction rate, car speed, and so on. Then, we design an admission control module that allows us to control internal factors such as image resolution and detection period to determine whether given parameters are acceptable or not for supporting end-to-end deadlines in the current environmental scenario while maintaining the accuracy of autonomous driving. The proposed framework has been verified with an RC car and a simulator.

12.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257652

RESUMEN

In autonomous vehicles, the LiDAR and radar sensors are indispensable components for measuring distances to objects. While deep-learning-based algorithms for LiDAR sensors have been extensively proposed, the same cannot be said for radar sensors. LiDAR and radar share the commonality of measuring distances, but they are used in different environments. LiDAR tends to produce less noisy data and provides precise distance measurements, but it is highly affected by environmental factors like rain and fog. In contrast, radar is less impacted by environmental conditions but tends to generate noisier data. To reduce noise in radar data and enhance radar data augmentation, we propose a LiDAR-to-Radar translation method with a voxel feature extraction module, leveraging the fact that both sensors acquire data in a point-based manner. Because of the translation of high-quality LiDAR data into radar data, this becomes achievable. We demonstrate the superiority of our proposed method by acquiring and using data from both LiDAR and radar sensors in the same environment for validation.

13.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276391

RESUMEN

In the research of robot systems, path planning and obstacle avoidance are important research directions, especially in unknown dynamic environments where flexibility and rapid decision makings are required. In this paper, a state attention network (SAN) was developed to extract features to represent the interaction between an intelligent robot and its obstacles. An auxiliary actor discriminator (AAD) was developed to calculate the probability of a collision. Goal-directed and gap-based navigation strategies were proposed to guide robotic exploration. The proposed policy was trained through simulated scenarios and updated by the Soft Actor-Critic (SAC) algorithm. The robot executed the action depending on the AAD output. Heuristic knowledge (HK) was developed to prevent blind exploration of the robot. Compared to other methods, adopting our approach in robot systems can help robots converge towards an optimal action strategy. Furthermore, it enables them to explore paths in unknown environments with fewer moving steps (showing a decrease of 33.9%) and achieve higher average rewards (showning an increase of 29.15%).

14.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38339513

RESUMEN

Currently, pest control work using speed sprayers results in increasing numbers of safety accidents such as worker pesticide poisoning and rollover of vehicles during work. To address this, there is growing interest in autonomous driving technology for speed sprayers. To commercialize and rapidly expand the use of self-driving speed sprayers, an economically efficient self-driving speed sprayer using a minimum number of sensors is essential. This study developed an orchard passage map using location data acquired from positioning sensors to generate autonomous driving paths, without installing additional sensors. The method for creating the orchard passage map presented in this study was to create paths using location data obtained by manually driving the speed sprayer and merging them. In addition, to apply the orchard passage map when operating autonomously, a method is introduced for generating an autonomous driving path for the work start point movement path, work path, and return point movement path.

15.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38339592

RESUMEN

Lane graphs are very important for describing road semantics and enabling safe autonomous maneuvers using the localization and path-planning modules. These graphs are considered long-life details because of the rare changes occurring in road structures. On the other hand, the global position of the corresponding topological maps might be changed due to the necessity of updating or extending the maps using different positioning systems such as GNSS/INS-RTK (GIR), Dead-Reckoning (DR), or SLAM technologies. Therefore, the lane graphs should be transferred between maps accurately to describe the same semantics of lanes and landmarks. This paper proposes a unique transfer framework in the image domain based on the LiDAR intensity road surfaces, considering the challenging requirements of its implementation in critical road structures. The road surfaces in a target map are decomposed into directional sub-images with X, Y, and Yaw IDs in the global coordinate system. The XY IDs are used to detect the common areas with a reference map, whereas the Yaw IDs are utilized to reconstruct the vehicle trajectory in the reference map and determine the associated lane graphs. The directional sub-images are then matched to the reference sub-images, and the graphs are safely transferred accordingly. The experimental results have verified the robustness and reliability of the proposed framework to transfer lane graphs safely and accurately between maps, regardless of the complexity of road structures, driving scenarios, map generation methods, and map global accuracies.

16.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400405

RESUMEN

Standard machine learning is unable to accommodate inputs which do not belong to the training distribution. The resulting models often give rise to confident incorrect predictions which may lead to devastating consequences. This problem is especially demanding in the context of dense prediction since input images may be only partially anomalous. Previous work has addressed dense out-of-distribution detection by discriminative training with respect to off-the-shelf negative datasets. However, real negative data may lead to over-optimistic evaluation due to possible overlap with test anomalies. To this end, we extend this approach by generating synthetic negative patches along the border of the inlier manifold. We leverage a jointly trained normalizing flow due to a coverage-oriented learning objective and the capability to generate samples at different resolutions. We detect anomalies according to a principled information-theoretic criterion which can be consistently applied through training and inference. The resulting models set the new state of the art on benchmarks for out-of-distribution detection in road-driving scenes and remote sensing imagery despite minimal computational overhead.

17.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400401

RESUMEN

RADARs and cameras have been present in automotives since the advent of ADAS, as they possess complementary strengths and weaknesses but have been underlooked in the context of learning-based methods. In this work, we propose a method to perform object detection in autonomous driving based on a geometrical and sequential sensor fusion of 3+1D RADAR and semantics extracted from camera data through point cloud painting from the perspective view. To achieve this objective, we adapt PointPainting from the LiDAR and camera domains to the sensors mentioned above. We first apply YOLOv8-seg to obtain instance segmentation masks and project their results to the point cloud. As a refinement stage, we design a set of heuristic rules to minimize the propagation of errors from the segmentation to the detection stage. Our pipeline concludes by applying PointPillars as an object detection network to the painted RADAR point cloud. We validate our approach in the novel View of Delft dataset, which includes 3+1D RADAR data sequences in urban environments. Experimental results show that this fusion is also suitable for RADAR and cameras as we obtain a significant improvement over the RADAR-only baseline, increasing mAP from 41.18 to 52.67 (+27.9%).

18.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400503

RESUMEN

In Advanced Driving Assistance Systems (ADAS), Automated Driving Systems (ADS), and Driver Assistance Systems (DAS), RGB camera sensors are extensively utilized for object detection, semantic segmentation, and object tracking. Despite their popularity due to low costs, RGB cameras exhibit weak robustness in complex environments, particularly underperforming in low-light conditions, which raises a significant concern. To address these challenges, multi-sensor fusion systems or specialized low-light cameras have been proposed, but their high costs render them unsuitable for widespread deployment. On the other hand, improvements in post-processing algorithms offer a more economical and effective solution. However, current research in low-light image enhancement still shows substantial gaps in detail enhancement on nighttime driving datasets and is characterized by high deployment costs, failing to achieve real-time inference and edge deployment. Therefore, this paper leverages the Swin Vision Transformer combined with a gamma transformation integrated U-Net for the decoupled enhancement of initial low-light inputs, proposing a deep learning enhancement network named Vehicle-based Efficient Low-light Image Enhancement (VELIE). VELIE achieves state-of-the-art performance on various driving datasets with a processing time of only 0.19 s, significantly enhancing high-dimensional environmental perception tasks in low-light conditions.

19.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610342

RESUMEN

In the field of intelligent connected vehicles, the precise and real-time identification of speed bumps is critically important for the safety of autonomous driving. To address the issue that existing visual perception algorithms struggle to simultaneously maintain identification accuracy and real-time performance amidst image distortion and complex environmental conditions, this study proposes an enhanced lightweight neural network framework, YOLOv5-FPNet. This framework strengthens perception capabilities in two key phases: feature extraction and loss constraint. Firstly, FPNet, based on FasterNet and Dynamic Snake Convolution, is developed to adaptively extract structural features of distorted speed bumps with accuracy. Subsequently, the C3-SFC module is proposed to augment the adaptability of the neck and head components to distorted features. Furthermore, the SimAM attention mechanism is embedded within the backbone to enhance the ability of key feature extraction. Finally, an adaptive loss function, Inner-WiseIoU, based on a dynamic non-monotonic focusing mechanism, is designed to improve the generalization and fitting ability of bounding boxes. Experimental evaluations on a custom speed bumps dataset demonstrate the superior performance of FPNet, with significant improvements in key metrics such as the mAP, mAP50_95, and FPS by 38.76%, 143.15%, and 51.23%, respectively, compared to conventional lightweight neural networks. Ablation studies confirm the effectiveness of the proposed improvements. This research provides a fast and accurate speed bump detection solution for autonomous vehicles, offering theoretical insights for obstacle recognition in intelligent vehicle systems.

20.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474994

RESUMEN

Graph neural networks (GNNs) have been proven to be an ideal approach to deal with irregular point clouds, but involve massive computations for searching neighboring points in the graph, which limits their application in large-scale LiDAR point cloud processing. Down-sampling is a straightforward and indispensable step in current GNN-based 3D detectors to reduce the computational burden of the model, but the commonly used down-sampling methods cannot distinguish the categories of the LiDAR points, which leads to an inability to effectively improve the computational efficiency of the GNN models without affecting their detection accuracy. In this paper, we propose (1) a LiDAR point cloud pre-segmented down-sampling (PSD) method that can selectively reduce background points while preserving the foreground object points during the process, greatly improving the computational efficiency of the model without affecting its 3D detection accuracy. (2) A lightweight GNN-based 3D detector that can extract point features and detect objects from the raw down-sampled LiDAR point cloud directly without any pre-transformation. We test the proposed model on the KITTI 3D Object Detection Benchmark, and the results demonstrate its effectiveness and efficiency for autonomous driving 3D object detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA