Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 44(10): e2200982, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964974

RESUMEN

In this work, a novel three nitro-group-bearing monomer 3,6-dinitro-9-(2-trifluoromethyl-4-nitrophenyl)-carbazole (Car-3NO2 -CF3 ) via a CN coupling reaction between 3,6-dinitro-9H-carbazole (Car-2NO2 ) and 2-chloro-5-nitrobenzotrifluoride is synthesized, and obtained single crystal and single crystal analysis data for this compound. The crystal system of Car-3NO2 -CF3 is monoclinic and it has a P 21/c space group. This new monomer (Car-3NO2 -CF3 ) is also utilized to synthesize a novel azo-linked polymer (Azo-Car-CF3 ). The trifluoromethyl group has polar CF bonds, and thus it is an effective functional group for the capture of iodine. Azo-Car-CF3 has great thermal stability with a mass loss of only 10% at 414 °C, as well as good chemical stability as is demonstrated by its low solubility in common organic solvents such as tetrahydrofuran (THF), acetone, methanol, ethanol, and N,N-dimethylformamide (DMF). The specific surface area of Azo-Car-CF3 can reach as high as 335 m2  g-1 . Azo-Car-CF3 exhibits an excellent capacity for iodine adsorption and can reach up to 1198 mg g-1 in cyclohexane solution, and its adsorption capacity for iodine vapor can get to 2100 mg g-1 . In addition, ethanol can be used to trigger the release of the captured iodine to be easily released from Azo-Car-CF3 .


Asunto(s)
Yodo , Polímeros , Hidrocarburos Fluorados/química , Solventes , Etanol
2.
Polymers (Basel) ; 15(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36616577

RESUMEN

Porous organic polymers incorporating nitrogen-rich functionalities have recently emerged as promising materials for efficient and highly selective CO2 capture and separation. Herein, we report synthesis and characterization of new two-dimensional (2D) benzene- and triazine-based azo-bridged porous organic polymers. Different synthetic approaches towards the porous azo-bridged polymers were tested, including reductive homocoupling of aromatic nitro monomers, oxidative homocoupling of aromatic amino monomers and heterocoupling of aromatic nitro monomers and a series of aromatic diamines of different lengths and rigidity. IR spectroscopy, 13C CP/MAS NMR spectroscopy, powder X-ray diffraction, elemental analysis, thermogravimetric analysis, nitrogen adsorption-desorption experiments and computational study were used to characterize structures and properties of the resulting polymers. The synthesized azo-bridged polymers are all amorphous solids of good thermal stability, exhibiting various surface areas (up to 351 m2 g-1). The obtained results indicated that the synthetic methods and building units have a pronounced effect on the porosity of the final materials. Reductive and oxidative homocoupling of aromatic nitro and amino building units, respectively, lead to 2D azo-bridged polymers of substantially higher porosity when compared to those produced by heterocoupling reactions. Periodic DFT calculations and Grand-canonical Monte Carlo (GCMC) simulations suggested that, within the used approximations, linear linkers of different lengths do not significantly affect CO2 adsorption properties of model azo-bridged polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA