Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 78(4): 641-652.e9, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32330457

RESUMEN

Ubiquitination is essential for numerous eukaryotic cellular processes. Here, we show that the type III effector CteC from Chromobacterium violaceum functions as an adenosine diphosphate (ADP)-ribosyltransferase that specifically modifies ubiquitin via threonine ADP-ribosylation on residue T66. The covalent modification prevents the transfer of ubiquitin from ubiquitin-activating enzyme E1 to ubiquitin-conjugating enzyme E2, which inhibits subsequent ubiquitin activation by E2 and E3 enzymes in the ubiquitination cascade and leads to the shutdown of polyubiquitin synthesis in host cells. This unique modification also causes dysfunction of polyubiquitin chains in cells, thereby blocking host ubiquitin signaling. The disruption of host ubiquitination by CteC plays a crucial role in C. violaceum colonization in mice during infection. CteC represents a family of effector proteins in pathogens of hosts from different kingdoms. All the members of this family specifically ADP-ribosylate ubiquitin. The action of CteC reveals a new mechanism for interfering with host ubiquitination by pathogens.


Asunto(s)
ADP-Ribosilación , Proteínas Bacterianas/metabolismo , Chromobacterium/metabolismo , Poliubiquitina/metabolismo , Treonina/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Animales , Proteínas Bacterianas/genética , Chromobacterium/genética , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Treonina/genética , Enzimas Activadoras de Ubiquitina/genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación
2.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399418

RESUMEN

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Animales , Ratones , Bacterias , Citrobacter , Infecciones por Enterobacteriaceae/microbiología , Mucosa Intestinal/microbiología , Mamíferos , Monosacáridos , Ácido N-Acetilneuramínico
3.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963246

RESUMEN

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Infecciones Estreptocócicas/veterinaria , Granjas , Enfermedades de los Porcinos/epidemiología , Virulencia/genética , Streptococcus suis/genética , Ganado
4.
Proc Natl Acad Sci U S A ; 119(51): e2218010119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36512499

RESUMEN

Type III secretion systems are bacterial nanomachines specialized in protein delivery into target eukaryotic cells. The structural and functional complexity of these machines demands highly coordinated mechanisms for their assembly and operation. The sorting platform is a critical component of type III secretion machines that ensures the timely engagement and secretion of proteins destined to travel this export pathway. However, the mechanisms that lead to the assembly of this multicomponent structure have not been elucidated. Herein, employing an extensive in vivo cross-linking strategy aided by structure modeling, we provide a detailed intersubunit contact survey of the entire sorting platform complex. Using the identified cross-links as signatures for pairwise intersubunit interactions in combination with systematic genetic deletions, we mapped the assembly process of this unique bacterial structure. Insights generated by this study could serve as the bases for the rational development of antivirulence strategies to combat several medically important bacterial pathogens.


Asunto(s)
Proteínas Bacterianas , Salmonella typhimurium , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Transporte de Proteínas
5.
Infect Immun ; 92(6): e0002024, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38775488

RESUMEN

The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.


Asunto(s)
Infecciones Bacterianas , Cannabinoides , Endocannabinoides , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Endocannabinoides/metabolismo , Humanos , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Animales , Interacciones Huésped-Patógeno/inmunología , Cannabinoides/metabolismo , Cannabinoides/farmacología
6.
Cell Immunol ; 403-404: 104856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39002222

RESUMEN

Yersinia pestis is the causative agent of bubonic, septicemic and pneumonic plague. The historical importance and potential of plague to re-emerge as a threat worldwide are indisputable. The most severe manifestion of plague is pneumonic plague, which results in disease that is 100% lethal without treatment. Y. pestis suppresses host immune responses early in the lung to establish infection. The later stages of infection see the rapid onset of hyperinflammatory responses that prove lethal. The study of Y. pestis host/pathogen interactions have largely been investigated during bubonic plague and with attenuated strains in cell culture models. There remains a somewhat limited understanding of the interactions between virulent Y. pestis and immune populations in the lung that drive severe disease. In this review we give a broad overview of the progression of pneumonic plague and highlighting how Y. pestis interfaces with host innate immune populations in the lung to cause lethal disease.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Innata , Pulmón , Peste , Yersinia pestis , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Peste/inmunología , Peste/microbiología , Humanos , Inmunidad Innata/inmunología , Pulmón/inmunología , Pulmón/microbiología , Animales , Interacciones Huésped-Patógeno/inmunología , Virulencia/inmunología
7.
Appl Environ Microbiol ; 90(9): e0100724, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39177327

RESUMEN

Akahoya is a volcanic soil rich in alumina, primarily deposited in Kyushu, Japan. We have found that Akahoya adsorbs bacteria in the water surrounding cattle grazing areas, suggesting a potential for environmental purification. This study investigated the spectrum of microorganisms adsorbed by Akahoya using a column filled with Akahoya through which a suspension of microorganisms was passed. Shirasu soil, another volcanic soil with a different chemical composition, was used as a control. Akahoya effectively adsorbed a diverse range of microorganisms including Escherichia coli, Campylobacter jejuni, Vibrio parahaemolyticus, Salmonella Enteritidis, Staphylococcus aureus, Clostridium perfringens, spores of Bacillus subtilis and Bacillus anthracis, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), murine norovirus, and avian influenza virus (H3N2), whereas Shirasu soil did not adsorb any of the organisms examined. Moreover, bacteria naturally present in river water, such as aerobic bacteria, total coliforms, and Enterobacteriaceae as indicators of river contamination, as well as E. coli added artificially to sterilized river water, were reduced to below the detection limit (<1 CFU/mL) after being passed through Akahoya. Additionally, the number of viable E. coli continued to decrease after contact with Akahoya for 1 month, suggesting bactericidal effects. Notably, the adsorption of E. coli to Akahoya was influenced by the concentration of phosphate and the pH of the suspension due to the interaction between the surface phosphorylation of organisms and Al2O3, the major chemical component of Akahoya. The present results demonstrate the remarkable ability of Akahoya to remove phosphate and microbes, suggesting that Akahoya could be used for water purification processes.IMPORTANCEAlthough a safe and sufficient water supply is essential for the maintenance of hygienic conditions, a major challenge is to develop a comprehensive effective, sustainable, and cost-effective technological approach for the treatment and purification of contaminated water. In this study, we demonstrated that a novel volcanic soil, Akahoya, which has unlimited availability, is a highly effective adsorbent for a wide range of bacterial and viral pathogens, suggesting its potential as a sustainable resource for this purpose. It was suggested that the adsorption of microorganisms on Akahoya was mediated by phosphate groups present on the surface structures of microorganisms, which bind to the alumina component of Akahoya according to the phosphate concentration and pH of the liquid phase. The present findings highlight the exceptional ability of Akahoya to eliminate or reduce phosphate and microorganisms effectively in water purification processes, thus contributing to the development of efficient and sustainable solutions for addressing water pollution challenges.


Asunto(s)
Bacterias , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Adsorción , Virus/genética , Virus/aislamiento & purificación , Microbiología del Suelo , Suelo/química , Animales , Japón , Purificación del Agua/métodos , Microbiología del Agua , Ríos/microbiología , Ríos/virología , Óxido de Aluminio/química
8.
BMC Microbiol ; 24(1): 251, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977975

RESUMEN

OBJECTIVES: To study the effect of agitation and temperature on biofilm formation (cell aggregates embedded within a self-produced matrix) by pathogenic bacteria isolated from Raw cow milk (RCM). METHODS: A 40 RCM samples were gathered from eight dairy farms in Riyadh, Saudi Arabia. After bacterial culturing and isolation, gram staining was performed, and all pathogenic, identified using standard criteria established by Food Standards Australia New Zealand (FSANZ), and non-pathogenic bacteria were identified using VITEK-2 and biochemical assays. To evaluate the effects of temperature and agitation on biofilm formation, isolated pathogenic bacteria were incubated for 24 h under the following conditions: 4 °C with no agitation (0 rpm), 15 °C with no agitation, 30 °C with no agitation, 30 °C with 60 rpm agitation, and 30 °C with 120 rpm agitation. Then, biofilms were measured using a crystal violet assay. RESULTS: Of the eight farm sites, three exhibited non-pathogenic bacterial contamination in their raw milk samples. Of the total of 40 raw milk samples, 15/40 (37.5%; from five farms) were contaminated with pathogenic bacteria. Overall, 346 bacteria were isolated from the 40 samples, with 329/346 (95.1%) considered as non-pathogenic and 17/346 (4.9%) as pathogenic. Most of the isolated pathogenic bacteria exhibited a significant (p < 0.01) increase in biofilm formation when grown at 30 °C compared to 4 °C and when grown with 120 rpm agitation compared to 0 rpm. CONCLUSION: Herein, we highlight the practices of consumers in terms of transporting and storing (temperature and agitation) can significantly impact on the growth of pathogens and biofilm formation in RCM.


Asunto(s)
Bacterias , Biopelículas , Leche , Temperatura , Animales , Biopelículas/crecimiento & desarrollo , Leche/microbiología , Bovinos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Arabia Saudita , Microbiología de Alimentos , Fenómenos Fisiológicos Bacterianos
9.
Arch Microbiol ; 206(5): 219, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627275

RESUMEN

Aeromonas hydrophila is one of the major freshwater fish pathogens. In the current study, a cocktail of D6 and CF7 phages was given orally to Labeo rohita to assess phage survival in fish organs as well as to determine the therapeutic efficacy of phage treatment against fish mortality caused by A. hydrophila. In the phage-coated feed, prepared by simple spraying method, phage counts were quite stable for up to 2 months with a decline of ≤ 0.23 log10 and ≤ 1.66 log10 PFU/g feed during 4 oC and room temperature storage. Throughout the experimental period of 7 days, both phages could be detected in the gut of fish fed with phage-coated feed. Besides, both CF7 and D6 phages were also detected in fish kidneys indicating the ability of both the phage to cross the intestinal barrier. During challenge studies with LD50 dose of A. hydrophila, phage cocktail doses of 1 × 106 - 1 × 108 PFU/g feed prevented the mortality in L. rohita with relative percentage survival (RPS) of 8.7-65.2. When challenged with LD90 dose of A. hydrophila, an RPS value of 28.6 was obtained at a phage cocktail dose of 1 × 108 PFU/g feed. The RPS data showed that orally-fed phage cocktail protected the fish against the mortality caused by A. hydrophila in a dose-dependent manner. Simple practical approaches for phage cocktail development, medicated feed preparation and oral administration along with phage survival and protection data make the current study useful for farmer-level application.


Asunto(s)
Bacteriófagos , Cyprinidae , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria
10.
Eur J Clin Microbiol Infect Dis ; 43(7): 1261-1295, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38676855

RESUMEN

BACKGROUND: Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS: Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS: By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.


Asunto(s)
Salud Pública , Enfermedades por Picaduras de Garrapatas , Garrapatas , Humanos , Enfermedades por Picaduras de Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/microbiología , Enfermedades por Picaduras de Garrapatas/transmisión , Europa (Continente)/epidemiología , Animales , Garrapatas/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/transmisión , Infecciones Bacterianas/microbiología
11.
Environ Sci Technol ; 58(29): 13065-13075, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989840

RESUMEN

A. butzleri is an underappreciated emerging global pathogen, despite growing evidence that it is a major contributor of diarrheal illness. Few studies have investigated the occurrence and public health risks that this organism possesses from waterborne exposure routes including through stormwater use. In this study, we assessed the prevalence, virulence potential, and primary sources of stormwater-isolated A. butzleri in fecally contaminated urban stormwater systems. Based on qPCR, A. butzleri was the most common enteric bacterial pathogen [25%] found in stormwater among a panel of pathogens surveyed, including Shiga-toxin producing Escherichia coli (STEC) [6%], Campylobacter spp. [4%], and Salmonella spp. [<1%]. Concentrations of the bacteria, based on qPCR amplification of the single copy gene hsp60, were as high as 6.2 log10 copies/100 mL, suggesting significant loading of this pathogen in some stormwater systems. Importantly, out of 73 unique stormwater culture isolates, 90% were positive for the putative virulence genes cadF, ciaB, tlyA, cjl349, pldA, and mviN, while 50-75% of isolates also possessed the virulence genes irgA, hecA, and hecB. Occurrence of A. butzleri was most often associated with the human fecal pollution marker HF183 in stormwater samples. These results suggest that A. butzleri may be an important bacterial pathogen in stormwater, warranting further study on the risks it represents to public health during stormwater use.


Asunto(s)
Arcobacter , Arcobacter/genética , Arcobacter/patogenicidad , Virulencia , Microbiología del Agua , Ciudades , Humanos
12.
Mol Biol Rep ; 51(1): 92, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38194006

RESUMEN

Nanoparticles (NPs) serve immense roles in various fields of science. They have vastly upgraded conventional methods in the fields of agriculture and food sciences to eliminate growing threats of crop damage and disease, caused by various phytopathogens including bacteria, fungi, viruses, and some insects. Bacterial diseases resulted in mass damage of crops by adopting antibacterial resistance, which has proved to be a major threat leading to food scarcity. Therefore, numerous NPs with antibacterial potentials have been formulated to overcome the problem of antibiotic resistance alongside an increase in crop yield and boosting plant immunity. NPs synthesized through green synthesis techniques have proved to be more effective and environment-friendly than those synthesized via chemical methods. NPs exhibit great roles in plants ranging from enhanced crop yield to disease suppression, to targeted drug and pesticide deliveries inside the plants and acting as biosensors for pathogen detection. NPs serves major roles in disruption of cellular membranes, ROS production, altering of DNA and protein entities and changing energy transductions. This review focuses on the antibacterial effect of NPs on several plant bacterial pathogens, mostly, against Pseudomonas syringe, Ralstonia solanacearum, Xanthomonas axonopodis, Clavibacter michiganensisand Pantoea ananatis both in vivo and ex vivo, thereby minimizing their antibacterial resistance and enhancing the plants acquired immunity. Therefore, NPs present a safer and more reliable bactericidal activity against various disease-causing bacteria in plants.


Asunto(s)
Bacterias , Productos Agrícolas , Agricultura , Antibacterianos/farmacología , Membrana Celular
13.
Biometals ; 37(4): 849-856, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38133868

RESUMEN

Copper has well-documented antibacterial effects but few have evaluated it after prolonged use and against bacteria and viruses. Coupons from three copper formulations (solid, thermal coating, and decal applications) and carbon steel controls were subjected to 200 rounds simulated cleaning using a Wiperator™ and either an accelerated hydrogen peroxide, quaternary ammonium, or artificial sweat products. Antibacterial activity against S. aureus and P. aeruginosa was then evaluated using a modified Environmental Protection Agency protocol. Antiviral activity against coronavirus (229E) and norovirus (MNV-1) surrogates was assessed using the TCID50 method. Results were compared to untreated control coupons. One hour after inoculation, S. aureus exhibited a difference in log kill of 1.16 to 4.87 and P. aeruginosa a log kill difference of 3.39-5.23 (dependent upon copper product and disinfectant) compared to carbon steel. MNV-1 demonstrated an 87-99% reduction on each copper surfaces at 1 h and 99% reduction at 2 h compared to carbon steel. Similarly, coronavirus 229E exhibited a 97-99% reduction after 1 h and 90-99% after 2 h. Simulated use with artificial sweat did not hinder the antiviral nor the antibacterial activity of Cu surfaces. Self-sanitizing copper surfaces maintained antibacterial and antiviral activity after 200 rounds of simulated cleaning.


Asunto(s)
Antibacterianos , Antivirales , Cobre , Staphylococcus aureus , Cobre/farmacología , Cobre/química , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Antivirales/química , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Norovirus/efectos de los fármacos , Coronavirus Humano 229E/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/química , Desinfectantes/farmacología , Desinfectantes/química
14.
Environ Res ; 248: 118277, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266895

RESUMEN

Managed aquifer recharge (MAR) stands out as a promising strategy for ensuring water resource sustainability. This study delves into the comparative impact of nitrate (NO3-) and oxygen (O2) as electron acceptors in MAR on water quality and safety. Notably, NO3-, acting as an electron acceptor, has the potential to enrich denitrifying bacteria, serving as hosts for antibiotic resistance genes (ARGs) and enriching human bacterial pathogens (HBPs) compared to O2. However, a direct comparison between NO3- and O2 remains unexplored. This study assessed risks in MAR effluent induced by NO3- and O2, alongside the presence of the typical refractory antibiotic sulfamethoxazole. Key findings reveal that NO3- as an electron acceptor resulted in a 2 times reduction in dissolved organic carbon content compared to O2, primarily due to a decrease in soluble microbial product production. Furthermore, NO3- significantly enriched denitrifying bacteria, the primary hosts of major ARGs, by 747%, resulting in a 66% increase in the overall abundance of ARGs in the effluent of NO3- MAR compared to O2. This escalation was predominantly attributed to horizontal gene transfer mechanisms, as evidenced by a notable 78% increase in the relative abundance of mobile ARGs, alongside a minor 27% rise in chromosomal ARGs. Additionally, the numerous denitrifying bacteria enriched under NO3- influence also belong to the HBP category, resulting in a significant 114% increase in the abundance of all HBPs. The co-occurrence of ARGs and HBPs was also observed to intensify under NO3- influence. Thus, NO3- as an electron acceptor in MAR elevates ARG and HBP risks compared to O2, potentially compromising groundwater quality and safety.


Asunto(s)
Antibacterianos , Agua Subterránea , Humanos , Antibacterianos/farmacología , Electrones , Bacterias , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Oxígeno , Agua Subterránea/microbiología
15.
Appl Microbiol Biotechnol ; 108(1): 136, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229327

RESUMEN

Livestock farms are major reservoirs of antibiotic resistance genes (ARGs) that are discharged into the environment. However, the abundance, diversity, and transmission of ARGs in duck farms and its impact on surrounding environments remain to be further explored. Therefore, the characteristics of ARGs and their bacterial hosts from duck farms and surrounding environment were investigated by using metagenomic sequencing. Eighteen ARG types which consist of 823 subtypes were identified and the majority conferred resistance to multidrug, tetracyclines, aminoglycosides, chloramphenicols, MLS, and sulfonamides. The floR gene was the most abundant subtype, followed by sul1, tetM, sul2, and tetL. ARG abundance in fecal sample was significantly higher than soil and water sample. Our results also lead to a hypothesis that Shandong province have been the most contaminated by ARGs from duck farm compared with other four provinces. PcoA results showed that the composition of ARG subtypes in water and soil samples was similar, but there were significant differences between water and feces samples. However, the composition of ARG subtypes were similar between samples from five provinces. Bacterial hosts of ARG subtypes were taxonomically assigned to eight phyla that were dominated by the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. In addition, some human bacterial pathogens could be enriched in duck feces, including Enterococcus faecium, Acinetobacter baumannii, and Staphylococcus aureus, and even serve as the carrier of ARGs. The combined results indicate that a comprehensive overview of the diversity and abundance of ARGs, and strong association between ARGs and bacterial community shift proposed, and benefit effective measures to improve safety of antibiotics use in livestock and poultry farming. KEY POINTS: • ARG distribution was widespread in the duck farms and surroundings environment • ARG abundance on the duck farms was significantly higher than in soil and water • Human bacterial pathogens may serve as the vectors for ARGs.


Asunto(s)
Antibacterianos , Patos , Animales , Antibacterianos/farmacología , Antibacterianos/análisis , Bacterias/genética , China , Farmacorresistencia Microbiana/genética , Granjas , Genes Bacterianos , Suelo , Agua/farmacología
16.
Phytopathology ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190849

RESUMEN

Xanthomonas spp. are plant pathogens known for significantly impacting crop yields. Among them, Xanthomonas albilineans (Xal) is notable for colonizing the xylem and causing sugarcane leaf scald disease. This study employed homologous recombination to mutate quorum sensing (QS) regulatory genes (rpf) to investigate their role in Xal pathogenicity. Deletions of rpfF (ΔrpfF), rpfC (ΔrpfC), and rpfG (ΔrpfG) led to reduced swarming, growth, and virulence. However, DSF supplementation restored swarming and growth in the ΔrpfF mutant. Deleting rpfC, rpfG, and rpfF also reduced twitching motility and affected Type IV Pilus (T4P) expression. Transcriptomic analysis revealed that ΔrpfF positively regulates flagellar genes. DSF supplementation in ΔrpfF (ΔrpfF-DSF) modulated the expression of flagellar, chemotaxis, and T4P genes. These findings elucidate the DSF-mediated swarming pathway in Xal and provide valuable insights into its regulatory mechanisms.

17.
Phytopathology ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235863

RESUMEN

Rice production worldwide is threatened by the disease Bacterial Panicle Blight (BPB) caused by Burkholderia glumae. Despite the threat, resources to control this disease such as completely resistant cultivars or effective chemical methods are still lacking. However, the need to control this disease has paved the way to explore biologically based approaches harnessing the antimicrobial activities of environmental bacteria. Previously, the bacterium Pseudomonas protegens PBL3 was identified as a potential biological control agent against B. glumae due to its antimicrobial activity against B. glumae. Such antimicrobial activity in vitro and in planta was associated with the P. protegens PBL3 bacteria-free secreted fraction (secretome), although the specific molecules responsible for this activity have remained elusive. In this work, we advance the characterization of the P. protegens PBL3 secretome, by evaluating the antimicrobial activity in vitro of selected secondary metabolites predicted by the P. protegens PBL3 genomic sequence against B. glumae. In addition, using Reversed Phase Liquid Chromatography Tandem Mass Spectrometry (RPLC-MS/MS), of the P. protegens PBL3 secretome, enabled us to successfully detect and quantify Pyoluteorin, 2,4-diacetylphloroglucinol (2,4-DAPG) and Pyochelin. Among those, Pyoluteorin and 2,4-DAPG reduced the growth of B. glumae in vitro along with reducing the symptoms of BPB and bacterial growth in planta, suggesting that these compounds could be effective as biopesticides to mitigate BPB.

18.
Phytopathology ; 114(1): 35-46, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37530473

RESUMEN

Global travel and trade in combination with climate change are expanding the geographic distribution of plant pathogens. The bacterium Xylella fastidiosa is a prime example. Native to the Americas, it has spread to Europe, Asia, and the Middle East. To assess the risk that pathogen introductions pose to crops in newly invaded areas, it is key to survey their diversity, host range, and disease incidence in relation to climatic conditions where they are already present. We performed a survey of X. fastidiosa in grapevine in Virginia using a combination of quantitative PCR, multilocus sequencing, and metagenomics. We also analyzed samples from deciduous trees with leaf scorch symptoms. X. fastidiosa subspecies fastidiosa was identified in grapevines in all regions of the state, even in Northern Virginia, where the temperature was below -9°C for 10 days per year on average in the years preceding sampling. Unexpectedly, we also found for the first time grapevine samples infected with X. fastidiosa subspecies multiplex (Xfm). The Xfm lineage found in grapevines had been previously isolated from blueberries in the Southeastern United States and was distinct from that found in deciduous trees in Virginia. The obtained results will be important for risk assessment of X. fastidiosa introductions in other parts of the world.


Asunto(s)
Enfermedades de las Plantas , Xylella , Virginia , Enfermedades de las Plantas/microbiología , Xylella/genética , Árboles , Productos Agrícolas
19.
Phytopathology ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387826

RESUMEN

We report high-quality genomes of three strains of Xanthomonas citri pv. mangiferaeindicae (Xcm), the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems (SS) and effectors involved in virulence of xanthomonads with (i) a T1SS of the hlyDB group, (ii) xps and xcs T2SSs, (iii) a T3SS with several type three effectors (T3E), including transcription activator-like effectors (TALE), (iv) several T4SSs associated with plasmid or integrative conjugative elements (ICE) mobility, (v) three T5SS subclasses (Va, Vb and Vc) and (vi) a single i3* T6SS. The two strains isolated in Burkina Faso from mango (Mangifera indica L.) and cashew (Anacardium occidentale L.) differed by only 14 SNPs and shared identical secretion systems and T3E repertoire. Several TALEs were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew, i.e., two distinct host genera of a same plant family. These new genomic resources will contribute to better understand the biology and evolution of this agriculturally major crop pathogen.

20.
Phytopathology ; 114(10): 2207-2220, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133938

RESUMEN

Xanthomonas species are specialized plant pathogens, often exhibiting a narrow host range. They rely on the translocation of effector proteins through the type III secretion system to colonize their respective hosts. The effector arsenal varies among Xanthomonas spp., typically displaying species-specific compositions. This species-specific effector composition, collectively termed the effectorome, is thought to influence host specialization. We determined the plant host-derived effectoromes of more than 300 deposited genomes of Xanthomonas species associated with either Solanaceae or Brassicaceae hosts. Comparative analyses revealed clear species-specific effectorome signatures. However, Solanaceae or Brassicaceae host-associated effectorome signatures were not detected. Nevertheless, host biases in the presence or absence of specific effector classes were observed. To assess whether host-associated effector absence results from selective pressures, we introduced effectors unique to Solanaceae pathogens to X. campestris pv. campestris and effectors unique to Brassicaceae pathogens to X. euvesicatoria pv. euvesicatoria (Xeue) and evaluated if these introductions hindered virulence on their respective hosts. Introducing the effector XopI into X. campestris pv. campestris reduced virulence on white cabbage leaves without affecting localized or systemic colonization. Introducing the XopAC or XopJ5 effectors into Xeue reduced virulence and colonization on tomato but not on pepper. Additionally, XopAC and XopJ5 induced a hypersensitive response on tomato leaves when delivered by Xeue or through Agrobacterium-mediated transient expression, confirming recognition in tomato. This study demonstrates the role of host-derived selection in establishing species-specific effectoromes, identifying XopAC and XopJ5 as recognized effectors in tomato.


Asunto(s)
Proteínas Bacterianas , Enfermedades de las Plantas , Sistemas de Secreción Tipo III , Xanthomonas , Xanthomonas/genética , Xanthomonas/patogenicidad , Xanthomonas/fisiología , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especificidad del Huésped , Solanaceae/microbiología , Brassicaceae/microbiología , Brassicaceae/inmunología , Especificidad de la Especie , Interacciones Huésped-Patógeno , Xanthomonas campestris/genética , Xanthomonas campestris/patogenicidad , Xanthomonas campestris/fisiología , Virulencia , Solanum lycopersicum/microbiología , Solanum lycopersicum/inmunología , Genoma Bacteriano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA