Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(12): 7501-7513, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38757804

RESUMEN

BACKGROUND: Okra contains flavonoids and vitamin C as antioxidants and it contains polysaccharides as immunomodulators. Flavonoids regulate the inflammatory response in mice and may be related to gut microbiota. This study therefore aimed to investigate the impact of okra extract (OE) on inflammation in mice and to elucidate its underlying mechanism. METHOD: Forty male Kunming (KM) mice were categorized into four groups: the control (CON) group, the lipopolysaccharide stimulation (LPS) group, the 5 mg mL-1 OE intervention (LPS + OE) group, and the 5 mg mL-1 OE supplementation plus mixed antibiotics (LPS + OE + ABX) group. RESULTS: The results showed that, compared with the OE group, the expression of inflammatory signaling pathway genes was upregulated and gut barrier genes were inhibited in the OE + ABX group. The Fxr receptor was activated and the abundance of Akkermansia was increased after OE supplementation, whereas the effect was reversed in the OE + ABX group. Meanwhile, Fxr was correlated positively with Akkermansia. CONCLUSION: The OE supplementation alleviated the inflammatory response in mice under LPS stimulation, accompanied by changes in gut microbiota and bile acid receptors, whereas the addition of antibiotics caused a disturbance to the gut microbiota in the OE group, thus reducing the effect of OE in alleviating the inflammatory response. © 2024 Society of Chemical Industry.


Asunto(s)
Abelmoschus , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Inflamación , Lipopolisacáridos , Extractos Vegetales , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Ratones , Masculino , Abelmoschus/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Ácidos y Sales Biliares/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Animales no Consanguíneos
2.
Cell Mol Life Sci ; 79(5): 243, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35429253

RESUMEN

Bile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.


Asunto(s)
Ácidos y Sales Biliares , Neoplasias Esofágicas , Ácidos y Sales Biliares/metabolismo , Carcinogénesis/patología , Neoplasias Esofágicas/metabolismo , Humanos , Hígado/metabolismo , Masculino
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430732

RESUMEN

A tight relationship between gut-liver diseases and brain functions has recently emerged. Bile acid (BA) receptors, bacterial-derived molecules and the blood-brain barrier (BBB) play key roles in this association. This study was aimed to evaluate how non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) impact the BA receptors Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) expression in the brain and to correlate these effects with circulating BAs composition, BBB integrity and neuroinflammation. A mouse model of NAFLD was set up by a high-fat and sugar diet, and NASH was induced with the supplementation of dextran-sulfate-sodium (DSS) in drinking water. FXR, TGR5 and ionized calcium-binding adaptor molecule 1 (Iba-1) expression in the brain was detected by immunohistochemistry, while Zonula occludens (ZO)-1, Occludin and Plasmalemmal Vesicle Associated Protein-1 (PV-1) were analyzed by immunofluorescence. Biochemical analyses investigated serum BA composition, lipopolysaccharide-binding protein (LBP) and S100ß protein (S100ß) levels. Results showed a down-regulation of FXR in NASH and an up-regulation of TGR5 and Iba-1 in the cortex and hippocampus in both treated groups as compared to the control group. The BA composition was altered in the serum of both treated groups, and LBP and S100ß were significantly augmented in NASH. ZO-1 and Occludin were attenuated in the brain capillary endothelial cells of both treated groups versus the control group. We demonstrated that NAFLD and NASH provoke different grades of brain dysfunction, which are characterized by the altered expression of BA receptors, FXR and TGR5, and activation of microglia. These effects are somewhat promoted by a modification of circulating BAs composition and by an increase in LBP that concur to damage BBB, thus favoring neuroinflammation.


Asunto(s)
Ácidos y Sales Biliares , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Barrera Hematoencefálica/metabolismo , Ocludina/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo
4.
J Gastroenterol Hepatol ; 36(4): 951-958, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32839988

RESUMEN

BACKGROUND AND AIM: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, and bile acids are thought to be associated with the pathogenesis of IBS. Bile acid receptors are expressed on intestinal epithelial cells. However, no study has assessed bile acid receptor proteins in IBS. Therefore, we examined the intestinal mucosal expression of bile acid receptors in patients with IBS. METHODS: Intestinal biopsies were performed in patients with IBS and controls. Mast cells, vitamin D receptor (VDR), and somatostatin were stained with specific antibodies. Levels of VDR, farnesoid X receptor (FXR), takeda-G-protein-receptor-5 (TGR5), claudins, and transient-receptor-potential-cation-channel-subfamily-V-member 6 (TRPV6) were assessed by western blotting. RESULTS: 3Mast cell counts in the second part of the duodenum were significantly higher in patients with IBS than in controls. VDR protein levels were significantly elevated in the duodenum and terminal ileum of patients with IBS compared with controls, although this difference was not seen in the cecum or rectum. FXR and TGR5 protein levels did not differ in any part of the intestine. VDR-positive cryptal epithelia in IBS were distributed not only at basal crypt but also along the upper part of the basal crypt epithelial cells. In contrast, the pattern of gut somatostatin-positive cells, claudins, and TRPV6 levels did not differ. CONCLUSIONS: The number of mast cells in the duodenum was significantly increased, and the protein expression levels of VDR, but not those of FXR or TGR5, were elevated in the duodenal epithelial crypt in patients with IBS.


Asunto(s)
Duodeno/metabolismo , Expresión Génica , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Duodeno/citología , Femenino , Humanos , Masculino , Mastocitos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Zhonghua Gan Zang Bing Za Zhi ; 29(5): 493-496, 2021 May 20.
Artículo en Zh | MEDLINE | ID: mdl-34107593

RESUMEN

Cholangiocarcinoma is a kind of malignant tumor that originates from the bile duct epithelium. Due to its insidious nature, there is no effective early diagnosis and treatment method. Therefore, once it is detected, it is at an advanced stage and has a poor prognosis. Bile acid is the main component of bile, which acts on cholangiocytes through bile acid receptors and plays a key role in the development of cholangiocarcinoma. Gut microbiota can participate in the occurrence of cholangiocarcinoma by regulating bile acid metabolism. This review mainly focuses on the role of bile acid and bile acid receptors in the occurrence and development of cholangiocarcinoma and the impact of gut microbiota in it.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Microbioma Gastrointestinal , Ácidos y Sales Biliares , Conductos Biliares Intrahepáticos , Humanos
6.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825239

RESUMEN

Bile acids are commonly known as digestive agents for lipids. The mechanisms of bile acids in the gastrointestinal track during normal physiological conditions as well as hepatic and cholestatic diseases have been well studied. Bile acids additionally serve as ligands for signaling molecules such as nuclear receptor Farnesoid X receptor and membrane-bound receptors, Takeda G-protein-coupled bile acid receptor and sphingosine-1-phosphate receptor 2. Recent studies have shown that bile acid signaling may also have a prevalent role in the central nervous system. Some bile acids, such as tauroursodeoxycholic acid and ursodeoxycholic acid, have shown neuroprotective potential in experimental animal models and clinical studies of many neurological conditions. Alterations in bile acid metabolism have been discovered as potential biomarkers for prognosis tools as well as the expression of various bile acid receptors in multiple neurological ailments. This review explores the findings of recent studies highlighting bile acid-mediated therapies and bile acid-mediated signaling and the roles they play in neurodegenerative and neurological diseases.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Enfermedades de la Retina/metabolismo , Transducción de Señal
7.
Handb Exp Pharmacol ; 256: 137-165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31201554

RESUMEN

In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.


Asunto(s)
Ácidos y Sales Biliares/química , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Ácidos y Sales Biliares/farmacología , Humanos , Ligandos
8.
Molecules ; 24(6)2019 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-30884797

RESUMEN

As a cellular bile acid sensor, farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) participate in maintaining bile acid, lipid, and glucose homeostasis. To date, several selective and dual agonists have been developed as promising pharmacological approach to metabolic disorders, with most of them possessing an acidic conjugable function that might compromise their pharmacokinetic distribution. Here, guided by docking calculations, nonacidic 6-ethyl cholane derivatives have been prepared. In vitro pharmacological characterization resulted in the identification of bile acid receptor modulators with improved pharmacokinetic properties.


Asunto(s)
Colanos/química , Enfermedades Metabólicas/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Acoplados a Proteínas G/agonistas , Ácidos y Sales Biliares/metabolismo , Colanos/síntesis química , Colanos/farmacocinética , Glucosa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Simulación del Acoplamiento Molecular , Estructura Molecular , Conformación Proteica/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
9.
BMC Endocr Disord ; 17(1): 60, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946907

RESUMEN

BACKGROUND: Recent studies show that bile acids are involved in glucose and energy homeostasis through activation of G protein coupled membrane receptor (TGR5) and farnesoid X receptor (FXR). A few researches have explored changes of TGR5 and FXR in animals with impaired glucose regulation. This study aimed to observe changes of plasma total bile acids (TBA), glucagon-like-peptide 1 (GLP-1), fibroblast growth factor 15 (FGF15), intestinal expressions of TGR5 and FXR, and correlations between them in rats with glucose intolerance. METHODS: Besides plasma fasting glucose, lipid, TBAs, alanine transaminase (ALT), active GLP-1(GLP-1A) and FGF15, a postprandial meal test was used to compare responses in glucose, insulin and GLP-1A among groups. The expressions of TGR5 and FXR in distal ileum and ascending colon were quantified by real-time PCR and western blot. RESULTS: TGR5 expression was significantly decreased in distal ileum in DM group compared to other groups, and TGR5 and FXR expressions in ascending colon were also decreased in DM group compared to other groups. Correlation analysis showed correlations between TBA and GLP-1A or FGF15. GLP-1A was correlated with TGR5 mRNA expression in colon, and FGF15 was correlated with FXR mRNA expression in colon. CONCLUSIONS: These results indicates that bile acid-TGR5/FXR axis contributes to glucose homeostasis.


Asunto(s)
Ácidos y Sales Biliares/sangre , Factores de Crecimiento de Fibroblastos/sangre , Péptido 1 Similar al Glucagón/sangre , Intolerancia a la Glucosa/sangre , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Progresión de la Enfermedad , Mucosa Intestinal/metabolismo , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratas
10.
Curr Drug Targets ; 25(3): 158-170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38192136

RESUMEN

Bile acids play important roles in the human body, and changes in their pool can be used as markers for various liver pathologies. In addition to their functional effects in modulating inflammatory responses and cellular survivability, the unconjugated or conjugated, secondary, or primary nature of bile acids accounts for their various ligand effects. The common hydrophilic bile acids have been used successfully as local treatment to resolve drug-induced cell damage or to ameliorate hearing loss. From various literature references, bile acids show concentration and tissue-dependent effects. Some hydrophobic bile acids act as ligands modulating vitamin D receptors, muscarinic receptors, and calcium-activated potassium channels, important proteins in the inner ear system. Currently, there are limited resources investigating the therapeutic effects of bile acid on hearing loss and little to no information on detecting bile acids in the remote ear system, let alone baseline bile acid levels and their prevalence in healthy and disease conditions. This review presents both hydrophilic and hydrophobic human bile acids and their tissue-specific effects in modulating cellular integrity, thus considering the possible effects and extended therapeutic applicability of bile acids to the inner ear tissue.


Asunto(s)
Ácidos y Sales Biliares , Pérdida Auditiva , Animales , Humanos , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/uso terapéutico , Oído Interno/efectos de los fármacos , Oído Interno/metabolismo , Audición/efectos de los fármacos , Pérdida Auditiva/tratamiento farmacológico , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Receptores de Calcitriol/metabolismo , Receptores Muscarínicos/metabolismo
11.
J Anim Sci Biotechnol ; 15(1): 79, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760843

RESUMEN

BACKGROUND: Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS: Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS: In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.

12.
Front Chem ; 12: 1425867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086986

RESUMEN

BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.

13.
Front Pharmacol ; 15: 1371574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576492

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, resulting in a huge medical burden worldwide. Accumulating evidence suggests that the gut microbiome and bile acids play pivotal roles during the development of NAFLD. Patients with NAFLD exhibit unique signatures of the intestinal microbiome marked by the priority of Gram-negative bacteria, decreased ratio of Firmicutes/Bacteroidetes (F/B), and increased Prevotella and Lachnospiraceae. The intestinal microbiota is involved in the metabolism of bile acids. Ursodeoxycholic acid (UDCA) is a key determinant in maintaining the dynamic communication between the host and gut microbiota. It generally shows surprising therapeutic potential in NAFLD with several mechanisms, such as improving cellular autophagy, apoptosis, and mitochondrial functions. This action is based on its direct or indirect effect, targeting the farnesoid X receptor (FXR) and various other nuclear receptors. This review aims to discuss the current studies on the involvement of the microbiome-UDCA interface in NAFLD therapy and provide prospective insights into future preventative and therapeutic approaches for NAFLD.

14.
Biomolecules ; 14(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062555

RESUMEN

Affecting approximately 25% of the global population, steatotic liver disease (SLD) poses a significant health concern. SLD ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis and fibrosis with a risk of severe liver complications such as cirrhosis and hepatocellular carcinoma. SLD is associated with obesity, atherogenic dyslipidaemia, and insulin resistance, increasing cardiovascular risks. As such, identifying SLD is vital for cardiovascular disease (CVD) prevention and treatment. Bile acids (BAs) have critical roles in lipid digestion and are signalling molecules regulating glucose and lipid metabolism and influencing gut microbiota balance. BAs have been identified as critical mediators in cardiovascular health, influencing vascular tone, cholesterol homeostasis, and inflammatory responses. The cardio-protective or harmful effects of BAs depend on their concentration and composition in circulation. The effects of certain BAs occur through the activation of a group of receptors, which reduce atherosclerosis and modulate cardiac functions. Thus, manipulating BA receptors could offer new avenues for treating not only liver diseases but also CVDs linked to metabolic dysfunctions. In conclusion, this review discusses the intricate interplay between BAs, metabolic pathways, and hepatic and extrahepatic diseases. We also highlight the necessity for further research to improve our understanding of how modifying BA characteristics affects or ameliorates disease.


Asunto(s)
Ácidos y Sales Biliares , Enfermedades Cardiovasculares , Humanos , Ácidos y Sales Biliares/metabolismo , Enfermedades Cardiovasculares/metabolismo , Animales , Hígado Graso/metabolismo , Metabolismo de los Lípidos , Microbioma Gastrointestinal
15.
Cells ; 12(5)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36899928

RESUMEN

Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.


Asunto(s)
Colestasis , Hepatopatías , Animales , Humanos , Ácidos y Sales Biliares , Colestasis/patología , Hepatopatías/etiología , Modelos Animales de Enfermedad , Fibrosis
16.
Pharmacol Ther ; 248: 108457, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268113

RESUMEN

Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Transducción de Señal , Humanos , Hígado , Ácidos y Sales Biliares , Polifenoles/farmacología
17.
Biochem Pharmacol ; : 115983, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38081371

RESUMEN

Since its first outbreak in 2020, the pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has caused the death of almost 7 million people worldwide. Vaccines have been fundamental in disease prevention and to reduce disease severity especially in patients with comorbidities. Nevertheless, treatment of COVID-19 has been proven difficult and several approaches have failed to prevent disease onset or disease progression, particularly in patients with comorbidities. Interrogation of drug data bases has been widely used since the beginning of pandemic to repurpose existing drugs/natural substances for the prevention/treatment of COVID-19. Steroids, including bile acids such as ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) have shown to be promising for their potential in modulating SARS-CoV-2/host interaction. Bile acids have proven to be effective in preventing binding of spike protein with the Angiotensin Converting Enzyme II (ACE2), thus preventing virus uptake by the host cells and inhibiting its replication, as well as in indirectly modulating immune response. Additionally, the two main bile acid activated receptors, GPBAR1 and FXR, have proven effective in modulating the expression of ACE2, suggesting an indirect role for these receptors in regulating SARS-CoV-2 infectiveness and immune response. In this review we have examined how the potential of bile acids and their receptors as anti-COVID-19 therapies and how these biochemical mechanisms translate into clinical efficacy.

18.
World J Gastroenterol ; 29(27): 4252-4270, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37545642

RESUMEN

Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ácidos y Sales Biliares , Intestinos , Hígado , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Disbiosis , Mamíferos
19.
Cell Biosci ; 13(1): 77, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120573

RESUMEN

Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.

20.
Front Pharmacol ; 13: 910493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873546

RESUMEN

Lithocholic acid (LCA) is a monohydroxy bile acid produced by intestinal flora, which has been found to be associated with a variety of hepatic and intestinal diseases. LCA is previously considered to be toxic, however, recent studies revealed that LCA and its derivatives may exert anti-inflammatory and anti-tumor effects under certain conditions. LCA goes through enterohepatic circulation along with other bile acids, here, we mainly discuss the effects of LCA on the gut-liver axis, including the regulation of gut microbiota, intestinal barrier, and relevant nuclear receptors (VDR, PXR) and G protein-coupled receptor five in related diseases. In addition, we also find that some natural ingredients are involved in regulating the detoxification and excretion of LCA, and the interaction with LCA also mediates its own biological activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA