Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 120(2): 426-443, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36308743

RESUMEN

Microalgae have received increasing attention as a potential feedstock for biofuel or biobased products. Forecasting the microalgae growth is beneficial for managers in planning pond operations and harvesting decisions. This study proposed a biomass forecasting system comprised of the Huesemann Algae Biomass Growth Model (BGM), the Modular Aquatic Simulation System in Two Dimensions (MASS2), ensemble data assimilation (DA), and numerical weather prediction Global Ensemble Forecast System (GEFS) ensemble meteorological forecasts. The novelty of this study is to seek the use of ensemble DA to improve both BGM and MASS2 model initial conditions with the assimilation of biomass and water temperature measurements and consequently improve short-term biomass forecasting skills. This study introduces the theory behind the proposed integrated biomass forecasting system, with an application undertaken in pseudo-real-time in three outdoor ponds cultured with Chlorella sorokiniana in Delhi, California, United States. Results from all three case studies demonstrate that the biomass forecasting system improved the short-term (i.e., 7-day) biomass forecasting skills by about 60% on average, comparing to forecasts without using the ensemble DA method. Given the satisfactory performances achieved in this study, it is probable that the integrated BGM-MASS2-DA forecasting system can be used operationally to inform managers in making pond operation and harvesting planning decisions.


Asunto(s)
Chlorella , Microalgas , Modelos Biológicos , Simulación por Computador , Biomasa
2.
Biotechnol Bioeng ; 118(3): 1419-1424, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33400263

RESUMEN

Accurate short-range (e.g., 7 days) microalgae growth forecasts will be beneficial for both the production and harvesting of microalgae. This study developed an operational microalgae growth forecasting system comprised of the Huesemann Algae Biomass Growth Model (BGM), the Modular Aquatic Simulation System in Two Dimensions (MASS2) hydrodynamic model, and ensemble data assimilation (DA). The novelty of this study is the use of ensemble DA to sequentially update the BGM model's initial condition (IC) with the assimilation of measured biomass optical density to improve short-range biomass forecasting skills. The forecasting system was run in pseudo-real-time and validated against observed Monoraphidium minutum 26B-AM growth in two outdoor pond cultures located in Mesa, Arizona, United States. We found the DA forecasting system could improve the 7-day microalgae forecasting skill by about 85% on average compared to model forecasts without DA. These results suggest the potential accuracy of biomass growth forecasts may be sufficient to inform real-time operational decisions, such as pond operation and harvest planning, for commercial-scale microalgae production.


Asunto(s)
Chlorophyceae/crecimiento & desarrollo , Simulación por Computador , Microalgas/crecimiento & desarrollo , Modelos Biológicos , Predicción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA