Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2313617121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377215

RESUMEN

Additive manufacturing capable of controlling and dynamically modulating structures down to the nanoscopic scale remains challenging. By marrying additive manufacturing with self-assembly, we develop a UV (ultra-violet)-assisted direct ink write approach for on-the-fly modulation of structural color by programming the assembly kinetics through photo-cross-linking. We design a photo-cross-linkable bottlebrush block copolymer solution as a printing ink that exhibits vibrant structural color (i.e., photonic properties) due to the nanoscopic lamellar structures formed post extrusion. By dynamically modulating UV-light irradiance during printing, we can program the color of the printed material to access a broad spectrum of visible light with a single ink while also creating color gradients not previously possible. We unveil the mechanism of this approach using a combination of coarse-grained simulations, rheological measurements, and structural characterizations. Central to the assembly mechanism is the matching of the cross-linking timescale with the assembly timescale, which leads to kinetic trapping of the assembly process that evolves structural color from blue to red driven by solvent evaporation. This strategy of integrating cross-linking chemistry and out-of-equilibrium processing opens an avenue for spatiotemporal control of self-assembled nanostructures during additive manufacturing.

2.
Proc Natl Acad Sci U S A ; 121(15): e2318072121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38573966

RESUMEN

As one of the most stunning biological nanostructures, the single-diamond (SD) surface discovered in beetles and weevils exoskeletons possesses the widest complete photonic bandgap known to date and is renowned as the "holy grail" of photonic materials. However, the synthesis of SD is difficult due to its thermodynamical instability compared to the energetically favoured bicontinuous double diamond and other easily formed lattices; thus, the artificial fabrication of SD has long been a formidable challenge. Herein, we report a bottom-up approach to fabricate SD titania networks via a one-pot cooperative assembly scenario employing the diblock copolymer poly(ethylene oxide)-block-polystyrene as a soft template and titanium diisopropoxide bis(acetylacetonate) as an inorganic precursor in a mixed solvent, in which the SD scaffold was obtained by kinetically controlled nucleation and growth in the skeletal channels of the diamond minimal surface formed by the polymer matrix. Electron crystallography investigations revealed the formation of tetrahedrally connected SD frameworks with the space group Fd [Formula: see text] m in a polycrystalline anatase form. A photonic bandgap calculation showed that the resulting SD structure has a wide and complete bandgap. This work solves the complex synthetic enigmas and offers a frontier in hyperbolic surfaces, biorelevant materials, next-generation optical devices, etc.

3.
Proc Natl Acad Sci U S A ; 120(34): e2301352120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579167

RESUMEN

Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene (iPP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE-iPP block copolymers (ca. 1 wt%) to mixtures of these polyolefins results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and iPP, where E and X are poly(ethylene-ran-ethylethylene) random copolymers with 6 wt% and 90 wt% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and iPP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline iPP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world's top two plastics.

4.
EMBO J ; 40(12): e107270, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33885174

RESUMEN

Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.


Asunto(s)
Micelas , Polímeros , ARN Largo no Codificante , Ribonucleoproteínas , Línea Celular , Humanos
5.
Nano Lett ; 24(7): 2165-2174, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329906

RESUMEN

Magnetic nanoarrays promise to enable new energy-efficient computations based on spintronics or magnonics. In this work, we present a block copolymer-assisted strategy for fabricating ordered magnetic nanostructures on silicon and permalloy substrates. Block copolymer micelle-like structures were used as a template in which polyoxometalate (POM) clusters could assemble in an opal-like structure. A combination of microscopy and scattering techniques was used to confirm the structural and organizational features of the fabricated materials. The magnetic properties of these materials were investigated by polarized neutron reflectometry, nuclear magnetic resonance, and magnetometry measurements. The data show that a magnetic structural design was achieved and that a thin layer of patterned POMs strongly influenced an underlying permalloy layer. This work demonstrates that the bottom-up pathway is a potentially viable method for patterning magnetic substrates on a sub-100 nm scale, toward the magnetic nanostructures needed for spintronic or magnonic crystal devices.

6.
Nano Lett ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193990

RESUMEN

Biomimicking natural structures to create structural materials with superior mechanical performance is an area of extensive attention, yet achieving both high strength and toughness remains challenging. This study presents a novel bottom-up approach using self-assembled block copolymer templating to synthesize bicontinuous nanohybrids composed of well-ordered nanonetwork hydroxyapatite (HAp) embedded in poly(methyl methacrylate) (PMMA). This structuring transforms intrinsically brittle HAp into a ductile material, while hybridization with PMMA alleviates the strength reduction caused by porosity. The resultant bicontinuous PMMA/HAp nanohybrids, reinforced at the interface, exhibit high strength and toughness due to the combined effects of topology, nanosize, and hybridization. This work suggests a conceptual framework for fabricating flexible thin films with mechanical properties significantly surpassing those of traditional composites and top-down approaches.

7.
Small ; 20(5): e2304746, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726236

RESUMEN

Highly anisotropic-shaped particles with well-ordered internal nanostructures have received significant attention due to their unique shape-dependent photonic, rheological, and electronic properties and packing structures. In this work, nanosheet particles with cylindrical block copolymer (BCP) arrays are achieved by utilizing collapsed emulsions as a scaffold for BCP self-assembly. Highly elongated structures with large surface areas are formed by employing crystallizable surfactants that significantly reduce the interfacial tension of BCP emulsions. Subsequently, the stabilized elongated emulsion structures lead to the formation of BCP nanosheets. Specifically, when polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and 1-octadecanol (C18-OH) are co-assembled within an emulsion, C18-OH penetrates the surfactant layer at the emulsion interface, lowering the interfacial tension (i.e., below 1 mN m-1 ) and causing emulsion deformation. In addition, C18-OH crystallization allows for kinetic arrest of the collapsed emulsion shape during solvent evaporation. Consequently, PS-b-PDMS BCPs self-assemble into defect-free structures within nanosheet particles, exhibiting an exceptionally high aspect ratio of over 50. The particle formation mechanism is further investigated by controlling the alkyl chain length of the fatty alcohol. Finally, the coating behavior of nanosheet particles is investigated, revealing that the deposition pattern on a substrate is strongly influenced by the particle's shape anisotropy, thus highlighting their potential for advanced coating applications.

8.
Small ; : e2310202, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822711

RESUMEN

Charged polymersomes are attractive for advanced material applications due to their versatile encapsulation capabilities and charge-induced functionality. Although desirable, the pH-sensitivity of charged block copolymers adds complexity to its self-assembly process, making it challenging to produce charged polymersomes in a reliable manner. In this work, a flow approach to control and strike a delicate balance between solvent composition and pH for self-assembly is used. This allows for the identification of a phase window to reliably produce of charged polymersomes. The utility of this approach to streamline downstream processes, such as morphological transformation or in-line purification is further demonstrated. As proof-of-concept, it is shown that the processed polymersomes can be used for surface modifications facilitated by charge complexation.

9.
Small ; : e2404306, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958070

RESUMEN

Nanofluidic ionic diodes have attracted much attention due to their unique functions as unidirectional ion transportation ability and promising applications from molecular sensing, and energy harvesting to emerging neuromorphic devices. However, it remains a challenge to fabricate diode-like nanofluidic systems with ultrathin film thickness <100 nm. Herein the formation of ultrathin ionic diodes from hybrid nanoassemblies of nanoporous (NP) SiO2 nanofilms and polyelectrolyte layer-by-layer (LbL) multilayers is described. Ultrathin ionic diodes are prepared by integrating polyelectrolyte multilayers onto photo-oxidized NP SiO2 nanofilms obtained from silsesquioxane-containing block copolymer thin films as a template. The obtained ultrathin ionic diodes exhibit ion current rectification (ICR) properties with high ICR factor = ≈20 under low ionic strength and asymmetric pH conditions. It is concluded that this ICR behavior arises from effective ion accumulation and depletion at the interface of NP SiO2 nanofilms and LbL multilayers attributed to high ion selectivity by combining the experimental data and theoretical calculations using finite element methods. These results demonstrate that the hybrid nano assemblies of NP SiO2 nanofilms and polyelectrolyte LbL multilayers have potential applications for (bio)sensing materials and integrated ionic circuits for seamless connection of human-machine interfaces.

10.
Small ; : e2401129, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837298

RESUMEN

Synthesis of polymeric nanoparticles of controlled non-spherical morphology is of profound interest for a wide variety of potential applications. Self-assembly of amphiphilic diblock copolymers is an attractive bottom-up approach to prepare such nanoparticles. In the present work, RAFT polymerization is employed to synthesize a variety of poly(N,N-dimethylacrylamide)-b-poly[butyl acrylate-stat-GCB] copolymers, where GCB represents vinyl monomer containing triazine based Janus guanine-cytosine nucleobase motifs featuring multiple hydrogen bonding arrays. Hydrogen bonding between the hydrophobic blocks exert significant influence on the morphology of the resulting nanoparticles self-assembled in water. The Janus feature of the GCB moieties makes it possible to use a single polymer type in self-assembly, unlike previous work exploiting, e.g., thymine-containing polymer and adenine-containing polymer. Moreover, the strength of the hydrogen bonding interactions enables use of a low molar fraction of GCB units, thereby rendering it possible to use the present approach for copolymers based on common vinyl monomers for the development of advanced nanomaterials.

11.
Chemphyschem ; 25(12): e202400236, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38517663

RESUMEN

In this paper we are addressing the co-solute-induced changes in the properties of an aqueous solution of a block copolymer. Due to the preferential interaction of different co-solute with different regions of the block copolymer, the changes were observed in both the physical properties and water dynamics. The modulation of both the physical properties and water dynamics was monitored using different spectroscopic techniques. Different co-solutes affect micellar properties of copolymer to a different extent signifying their interactions with different regions within the copolymer. The solvent relaxation dynamics were also modulated with the additions of different co-solutes. The change in free-energy (ΔGbf) and rate constant for bound to free water interconversion (kbf) in a copolymeric micelle was calculated which gets affected by the addition of co-solutes. The calculated kbf suggests that betaine, sarcosine, TMAO, and GnHCl favor the ordering of water molecules around the micelle and are excluded from the micellar surface whereas, urea favors the formation of free-water molecules rather than the structurally ordered bound water molecules around the micelle by accumulating at the micellar surface. Among the added methylamines trimethylamine N-oxide affected the water dynamics and its kinetics most profoundly. The protective property of GnHCl was revealed.

12.
Anal Bioanal Chem ; 416(20): 4571-4580, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902347

RESUMEN

Recently, open tubular capillary electrochromatography (OT-CEC) has captured considerable interest; its efficient separation capability hinges on the interactions between analytes and polymer coatings. However, in situ growth of stimuli-responsive polymers as coatings has been rarely studied and is crucial for expanding the OT-CEC technique and its application. Herein, following poly(styrene-maleicanhydride) (PSM) chemically bonded onto the inner surface of the capillary, a dual pH/temperature stimuli-responsive block copolymer, P(SMN-COOH), was prepared by in situ polymerizing poly(N-isopropylacrylamide) carboxylic acid terminated [P(N-COOH)] in PSM. An OT-CEC protocol was first explored using the coated capillary for epimedins separation. As a proof of concept, the developed OT-CEC system facilitated hydrogen bonding and tuning the hydrophilic/hydrophobic interactions between the test analytes and the P(SMN-COOH) coating by varying buffer pH and environmental temperature. Four epimedins with similar chemical structures were baseline separated under 40 °C at pH 10.0, exhibiting dramatical improvement in separation efficiency in comparison to its performance under 25 °C at pH 4.0. In addition, the coated capillary showed good repeatability and reusability with relative standard deviations for migration time and peak area between 0.7 and 1.7% and between 2.9 and 4.6%, respectively, and no significant changes after six runs. This work introduces a paradigm for efficient OT-CEC separation of herbal medicines through adjusting the interactions between analytes and smart polymer coatings, addressing polymer coating design and OT-CEC challenges.

13.
Macromol Rapid Commun ; 45(8): e2300696, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160322

RESUMEN

Controlling the internal structure of block copolymer (BCP) particles has a significant influence on its functionalities. Here, a structure-controlling method is proposed to regulate the internal structure of BCP Janus colloidal particles using different surfactants. Different microphase separation processes take place in two connected halves of the Janus particles. An order-order transition between gyroid and lamellar phases is observed in polymeric colloids. The epitaxial growth during the structural transformation from gyroid to lamellar phase undergoes a two-layered rearrangement to accommodate the interdomain spacing mismatch between these two phases. This self-assembly behavior can be ascribed to the preferential wetting of BCP chains at the interface, which can change the chain conformation of different blocks. The Janus colloidal particles can further experience a reversible phase transition by restructuring the polymer particles under solvent vapor. It is anticipated that the new phase behavior found in Janus particles can not only enrich the self-assembly study of BCPs but also provide opportunities for various applications based on Janus particles with ordered structures.


Asunto(s)
Coloides , Polímeros , Coloides/química , Polímeros/química , Tamaño de la Partícula , Propiedades de Superficie , Tensoactivos/química , Transición de Fase , Estructura Molecular
14.
Macromol Rapid Commun ; 45(12): e2400097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499007

RESUMEN

Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage. The authors explore the synthesis and aqueous micellization of well-defined poly(ethylene glycol)-based block copolymer bearing BzAA linkage covalently attached to a polymethacrylate block for the formation of colloidally-stable nanoassemblies with BzAA groups at core/corona interfaces. Promisingly, the investigation on acid-catalyzed hydrolysis and disassembly shows that the formed nanoassemblies meet the criteria for acid-degradable shell-sheddable nanoassemblies: slow degradation at tumoral pH = 6.5 and rapid disassembly at endo/lysosomal pH = 5.0, while colloidal stability at physiological pH = 7.4. This work guides the design principle of acid-degradable shell-sheddable nanoassemblies bearing BzAA at interfaces, thus offering the promise to address the PEG dilemma and improve endocytosis in tumor-targeting drug delivery.


Asunto(s)
Acetales , Benzaldehídos , Acetales/química , Benzaldehídos/química , Concentración de Iones de Hidrógeno , Hidrólisis , Polímeros/química , Polímeros/síntesis química , Polietilenglicoles/química , Humanos , Estructura Molecular , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química
15.
Macromol Rapid Commun ; 45(14): e2400093, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639102

RESUMEN

The formation of ABC triblock terpolymers through solution casting is still challenging. In this study, core-shell double gyroid network structures are fabricated via solution casting using poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) (F)-b-[poly(4-vinylpyridine) (P4VP) (P)]-b-[polystyrene (PS) (S)] (FPS) triblock terpolymers in N,N-dimethylformamide (DMF). Upon heat treatment, the polymer tends to form a sphere-in-lamellar structure at the F/S interface. Given the solubility properties of each component in DMF, it is anticipated that the effective volume fraction of F relative to P would increase in concentrated solutions and the effective volume fraction of S would decrease. The microphase-separated structure derived from the DMF solution consistently results in the formation of a network structure composed of a core-shell double gyroid, with F as the matrix, P as the shell, and S as the core, and their periodic lengths gradually increase to 110.8, 131.8, and 162.7 nm as increase molecular weights of PS blocks to 13.8, 20.7, and 28.8 kg mol-1. Based on the solubility properties of the polymer components highlighted in this study, the solvent selection strategy is broadly applicable to ABC triblock terpolymers featuring various polymer components, offering a more efficient avenue for fabricating core-shell double gyroid structures.


Asunto(s)
Polímeros , Solubilidad , Polímeros/química , Dimetilformamida/química , Polivinilos/química , Estructura Molecular , Poliestirenos/química , Solventes/química , Tamaño de la Partícula
16.
Environ Res ; 252(Pt 2): 118897, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621631

RESUMEN

The mesoporous metal oxide semiconductors exhibit unique chemical and physical characteristics, making them highly desirable for catalysis, electrochemistry, energy conversion, and energy storage applications. Here, we report the facial fabrication of mesoporous gray SnO2 (MGS) electrocatalysts employing an evaporation-induced co-assembly (EICA) approach, utilizing poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers Pluronic P123 (PEO-PPO-PEO) triblock copolymer as a template for electrochemical CO2 reduction reaction (eCO2RR). By sustaining the co-assembly conditions and utilizing a thermal treatment technique based on carbon, gray mesoporous SnO2 materials with a high density of active sites and oxygen vacancies can be constructed. The MGS materials were employed in eCO2RR in a flow cell type, which exhibits excellent catalytic activity and selectivity toward formate with a high partial current density of -234 mA cm-2 and Faradaic efficiency (FE) of 93.60 % at -1.3 V vs. reversible hydrogen electrode (RHE). Interestingly, the mesoporous SnO2 with a 1.5 wt% ratio of Sn precursor to P123 surfactant (MS-1.5@350N-400A) electrode exhibits a high level of Faradaic efficiency (FE) of (98%) at a low overpotential of -0.6 VRHE, which is a seldom recorded performance for similar systems. A stable FE of 96 ± 1% was observed in the range of -0.6 to -1.2 VRHE, which is the result of a large surface area (184 m2/g) and a high number of active sites and oxygen vacancies within the mesostructured framework.


Asunto(s)
Dióxido de Carbono , Formiatos , Oxidación-Reducción , Compuestos de Estaño , Catálisis , Compuestos de Estaño/química , Dióxido de Carbono/química , Formiatos/química , Porosidad , Técnicas Electroquímicas/métodos
17.
Biofouling ; 40(7): 377-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955544

RESUMEN

Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom Navicula incerta.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Diatomeas , Dimetilpolisiloxanos , Incrustaciones Biológicas/prevención & control , Diatomeas/fisiología , Dimetilpolisiloxanos/química , Animales , Tampones (Química) , Propiedades de Superficie , Concentración de Iones de Hidrógeno
18.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723049

RESUMEN

Periodic gyroid network materials have many interesting properties (band gaps, topologically protected modes, superior charge and mass transport, and outstanding mechanical properties) due to the space-group symmetries and their multichannel triply continuous morphology. The three-dimensional structure of a twin boundary in a self-assembled polystyrene-b-polydimethylsiloxane (PS-PDMS) double-gyroid (DG) forming diblock copolymer is directly visualized using dual-beam scanning microscopy. The reconstruction clearly shows that the intermaterial dividing surface (IMDS) is smooth and continuous across the boundary plane as the pairs of chiral PDMS networks suddenly change their handedness. The boundary plane therefore acts as a topological mirror. The morphology of the normally chiral nodes and strut loops within the networks is altered in the twin-boundary plane with the formation of three new types of achiral nodes and the appearance of two new classes of achiral loops. The boundary region shares a very similar surface/volume ratio and distribution of the mean and Gaussian curvatures of the IMDS as the adjacent ordered DG grain regions, suggesting the twin is a low-energy boundary.

19.
Nano Lett ; 23(8): 3267-3273, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37071064

RESUMEN

With increasing applications for voltage-controlled magnetism, the need to more fully understand magnetoelectric coupling and strain transfer in nanostructured multiferroic composites has also increased. Here, multiferroic nanocomposites were synthesized using block copolymer templating to create mesoporous cobalt ferrite (CFO), followed by partly filling the pores with ferroelectric zirconium-substituted hafnia (HZO) using atomic layer deposition (ALD) to produce a porous multiferroic composite with enhanced mechanical flexibility. Upon electrical poling of the nanocomposite, we observed large changes in the magnetization. These changes partly relaxed upon removing the electric field, suggesting a strain-mediated mechanism. Both the anisotropic strain transfer from HZO to CFO and the strain relaxation after the field was removed were confirmed using high-resolution X-ray diffraction measurements collected during in-situ poling. The in-situ observation of both anisotropic strain transfer and large magnetization changes allows us to directly characterize the strong multiferroic coupling that can occur in flexible, nanostructured composites.

20.
Angew Chem Int Ed Engl ; 63(27): e202404207, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647637

RESUMEN

Alkyl borane compounds-mediated polymerizations have expanded to Lewis pair polymerization, free radical polymerization, ionic ring-opening polymerization, and polyhomologation. The bifunctional organoborane catalysts that contain the Lewis acid and ammonium or phosphonium salt in one molecule have demonstrated superior catalytic performance for ring-opening polymerization of epoxides and ring-opening copolymerization of epoxides and CO2 than their two-component analogues, i.e., the blend of organoborane and ammonium or phosphonium salt. To explore the origin of the differences of the one-component and two-component organoborane catalysts, here we conducted a systematic investigation on the catalytic performances of these two kinds of organoborane catalysts via terpolymerization of epoxide, carbon dioxide and anhydride. The resultant terpolymers produced independently by bifunctional and binary organoborane catalyst exhibited distinct microstructures, where a series of gradient polyester-polycarbonate terpolymers with varying polyester content were afforded using the bifunctional catalyst, while tapering diblock terpolymers were obtained using the binary system. The bifunctional catalyst enhances the competitiveness of CO2 insertion than anhydride, which leads to the premature incorporation of CO2 into the polymer chains and ultimately results in the formation of gradient terpolymers. DFT calculations revealed the role of electrostatic interaction and charge distribution caused by intramolecular synergistic effect for bifunctional organoborane catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA