Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.185
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2308698120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37922326

RESUMEN

Block polymers are an attractive platform for uncovering the factors that give rise to self-assembly in soft matter owing to their relatively simple thermodynamic description, as captured in self-consistent field theory (SCFT). SCFT historically has found great success explaining experimental data, allowing one to construct phase diagrams from a set of candidate phases, and there is now strong interest in deploying SCFT as a screening tool to guide experimental design. However, using SCFT for phase discovery leads to a conundrum: How does one discover a new morphology if the set of candidate phases needs to be specified in advance? This long-standing challenge was surmounted by training a deep convolutional generative adversarial network (GAN) with trajectories from converged SCFT solutions, and then deploying the GAN to generate input fields for subsequent SCFT calculations. The power of this approach is demonstrated for network phase formation in neat diblock copolymer melts via SCFT. A training set of only five networks produced 349 candidate phases spanning known and previously unexplored morphologies, including a chiral network. This computational pipeline, constructed here entirely from open-source codes, should find widespread application in block polymer phase discovery and other forms of soft matter.

2.
Small ; : e2401934, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860565

RESUMEN

Amphiphilic block copolymer and lipids can be assembled into hybrid vesicles (HVs), which are an alternative to liposomes and polymersomes. Block copolymers that have either poly(sitostryl methacrylate) or statistical copolymers of sitosteryl methacrylate and butyl methacrylate as the hydrophobic part and a poly(carboxyethyl acrylate) hydrophilic segment are synthesized and characterized. These block copolymers assemble into small HVs with soybean L-α-phosphatidylcholine (soyPC), confirmed by electron microscopy and small-angle X-ray scattering. The membrane's hybrid nature is illustrated by fluorescence resonance energy transfer between labeled building blocks. The membrane packing, derived from spectra when using Laurdan as an environmentally sensitive fluorescent probe, is comparable between small HVs and the corresponding liposomes with molecular sitosterol, although the former show indications of transmembrane asymmetry. Giant HVs with homogenous distribution of the block copolymers and soyPC in their membranes are assembled using the electroformation method. The lateral diffusion of both building blocks is slowed down in giant HVs with higher block copolymer content, but their permeability toward (6)-carboxy-X-rhodamine is higher compared to giant vesicles made of soyPC and molecular sitosterol. This fundamental effort contributes to the rapidly expanding understanding of the integration of natural membrane constituents with designed synthetic compounds to form hybrid membranes.

3.
Small ; : e2311939, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461516

RESUMEN

This study establishes a comprehensive library of nanopatterns achievable by a single block copolymer (BCP), ranging from spheres to complex structures like split micelles, flower-like clusters, toroids, disordered micelle arrays, and unspecified unique shapes. The ordinary nanostructures of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) surface micelles deposited on a SiOx surface undergo a unique morphology transformation when immersed directly in solvents. Investigating parameters such as immersion solvents, BCP molecular weight, substrate interactions, and temperature, this work reveals the influence of these parameters on the thermodynamics and kinetics governing the morphology transformation. Additionally, the practical application of BCP nanopattern templates for fabricating metal nanostructures through direct solvent immersion of surface micelles is demonstrated. This approach offers an efficient and effective method for producing diverse nanostructures, with the potential to be employed in nanolithography, catalysts, electronics, membranes, plasmonics, and photonics.

4.
Small ; 20(1): e2304955, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37649168

RESUMEN

Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control. Herein, a synergetic self-assembly strategy is proposed to prepare organic-organic hybrid colloidal mesostructures by blending a liquid crystalline block copolymer (LC-BCP) with small molecular amphiphiles. Through a classic solvent-exchange process, amphiphiles embedded with LC-BCP realize multi-component nucleation and hierarchical assembly driven by anisotropic interaction from the LC ordering alignment of the core-forming block. 1D nanofibers with a periodic striped structure are formed by further LC component fusion and refinement. In addition, LC ordering effect of LC-BCP can be regulated by selecting appropriate solvents and leads to the formation of vesicular co-micelles. By means of the thermal-responsive behavior of amphiphiles, hexagonal pore arrays are finally generated on the surface of those vesicles.

5.
Small ; 20(6): e2306116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794626

RESUMEN

The COVID-19 mRNA vaccines represent a milestone in developing non-viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer-based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity-efficiency dilemma. Introducing anionic, hydrophilic, or "stealth" functionalities represents a promising approach to overcome this dilemma in gene delivery. Here, two sets of diblock terpolymers are created comprising hydrophobic poly(n-butyl acrylate) (PnBA), a copolymer segment made of hydrophilic 4-acryloylmorpholine (NAM), and either the cationic 3-guanidinopropyl acrylamide (GPAm) or the 2-carboxyethyl acrylamide (CEAm), which is negatively charged at neutral conditions. These oppositely charged sets of diblocks are co-assembled in different ratios to form mixed micelles. Since this experimental design enables countless mixing possibilities, a machine learning approach is applied to identify an optimal GPAm/CEAm ratio for achieving high transfection efficiency and cell viability with little resource expenses. After two runs, an optimal ratio to overcome the toxicity-efficiency dilemma is identified. The results highlight the remarkable potential of integrating machine learning into polymer chemistry to effectively tackle the enormous number of conceivable combinations for identifying novel and powerful gene transporters.


Asunto(s)
Micelas , Polietilenglicoles , Polietilenglicoles/química , Polímeros/química , Técnicas de Transferencia de Gen , Acrilamidas
6.
Small ; : e2312099, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644335

RESUMEN

Investigations of host-guest interactions at water-oil (w/o) interfaces are limited in single emulsion systems producing simple self-assembled objects with limited uses. Here, within hierarchically ordered water-in-oil-in-water (w/o/w) multiple emulsion droplets, interfacial self-assembly of (polynorbornene-graft-polystyrene)-block-(polynorbornene-graft-polyethylene glycol) (PNPS-b-PNPEG) bottlebrush block copolymers can be precisely controlled through host-guest interactions. α-Cyclodextrin (α-CD) in the aqueous phase can thread onto PEG side chains of the bottlebrush surfactants adsorbed at the w/o interface, leading to dehydration and collapsed chain conformation of the PEG block. Consequently, spherical curvature of the w/o internal droplets increases with the increased asymmetry of the bottlebrush molecules, producing photonic supraballs with precisely tailored structural parameters as well as photonic bandgaps. This work provides a simple but highly effective strategy for precise manipulation of complex emulsion systems applicable in a variety of applications, such as photonic pigments, cosmetic products, pesticides, artificial cells, etc.

7.
Chemistry ; : e202401453, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951115

RESUMEN

Supramolecular materials have been assembled using a wide range of interactions, including the hydrophobic effect, DNA base-pairing, and hydrogen bonding. Specifically, DNA amphiphiles with a hydrophobic building block self-assemble into diverse morphologies depending on the length and composition of both blocks. Herein, we take advantage of the orthogonality of different supramolecular interactions - the hydrophobic effect, Watson-Crick-Franklin base pairing and RNA kissing loops - to create hierarchical self-assemblies with controlled morphologies on both the nanometer and the micrometer scales. Assembly through base-pairing leads to the formation of hybrid, multi-phasic hydrogels with high stiffness and self-healing properties. Assembly via hydrophobic core interactions gives anisotropic, discrete assemblies, where DNA fibers with one sequence are terminated with DNA spheres bearing different sequences. This work opens new avenues for the bottom-up construction of DNA-based materials, with promising applications in drug delivery, tissue engineering, and the creation of complex DNA structures from a minimum array of components.

8.
Chemistry ; 30(28): e202400312, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38454618

RESUMEN

With the development of nanotechnology, the preparation of polymeric nanoparticles with nicely defined structures has been well-developed, and the functionalization and subsequent applications of the resultant nanostructures are becoming increasingly important. Particularly, by introducing mesogenic ordering as the driving force for the solution-state self-assembly of liquid crystalline (LC) block copolymers (BCPs), micellar nanostructures with different morphologies, especially anisotropic morphologies, can be easily prepared. This review summarizes the recent progress in the solution-state self-assembly of LC BCPs and is mostly focused on four main related aspects, including an in-depth understanding of the mesogenic ordering-driven self-assembly, precise assembly methods, utilization of these methods to fabricate hierarchical structures, and the potential applications of these well-defined nanostructures. We hope not only to make a systematic summary of previous studies but also to provide some useful thinking for the future development of this field.

9.
Macromol Rapid Commun ; : e2400121, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38636079

RESUMEN

The utilization of polymer conformations to construct a variety of superlattices is a common method within the field. However, this technique often results in only long-range ordering rather than the formation of distinct superlattices. In this study, a well-organized array of discrete pancake-shaped superlattices (DPSs) is successfully obtained through the utilization of air-liquid interface self-assembly, facilitated by the confined environment created by a block copolymer. It is crucial to note that both the self-assembly behavior and resulting morphologies of the DPSs can be precisely tuned by adjusting several experimental parameters, most notably the concentration and molecular architecture of the block copolymers. Furthermore, this work provides valuable insights into the formation processes and mechanisms underpinning the DPSs. The approach described here is both straightforward and efficacious, establishing a strong foundation for subsequent research and the development of non-close-packed superlattice structures.

10.
Macromol Rapid Commun ; 45(3): e2300500, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37870940

RESUMEN

A facile method based on recyclable nanoscale zero-valent iron (nZVI)-mediated photoinduced reversible deactivation radical polymerization in ionic liquid (IL) leads to the synthesis of narrow disperse poly(tert-butyl methacrylate) (PTBMA), amphiphilic PTBMA-block-poly(poly(ethylene glycol)methacrylate) diblock copolymer and double hydrophilic poly(methacrylic acid)-block-poly(poly(ethylene glycol)methacrylate) (PMAA-b-PPEGMA) diblock copolymers thereof. Stimuli response of the synthesized PMAA-b-PPEGMA diblock copolymer against variation in pH and temperature is assessed. Recyclability of the nZVI (catalyst) and IL (solvent) is established. Polymerization may be switched ON or OFF, simply by turning the UVA light irradiation ON or OFF, offering temporal control. The diblock copolymer self-aggregates into spherical nanoaggregates which are employed for encapsulation of coumarin 102 (C102, a typical hydrophobic dye), describing their potential application in drug delivery applications. The facile synthesis strategy may open up new avenues for the preparation of intelligent functional polymers for engineering and biomedical applications.


Asunto(s)
Líquidos Iónicos , Polímeros , Polímeros/química , Ácidos Polimetacrílicos/química
11.
Macromol Rapid Commun ; : e2400395, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987908

RESUMEN

Photocatalytic generation of H2 via water splitting emerges as a promising avenue for the next generation of green hydrogen due to its low carbon footprint. Herein, a versatile platform is designed to the preparation of functional π-conjugated organic nanoparticles dispersed in aqueous phase via mini-emulsification. Such particles are composed of donor-acceptor-donor (DAD) trimers prepared via Stille coupling, stabilized by amphiphilic block copolymers synthesized by reversible addition-fragmentation chain transfer polymerization. The hydrophilic segment of the block copolymers will not only provide colloidal stability, but also allow for precise control over the surface functionalization. Photocatalytic tests of the resulting particles for H2 production resulted in promising photocatalytic activity (≈0.6 mmol g-1 h-1). This activity is much enhanced compared to that of DAD trimers dispersed in the water phase without stabilization by the block copolymers.

12.
Macromol Rapid Commun ; : e2400100, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520318

RESUMEN

Polymerization-induced self-assembly (PISA) has emerged as a scalable one-pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l-lactide)-b-poly(ethylene glycol) BCP nanoparticles coined ring-opening polymerization (ROP)-induced crystallization-driven self-assembly (ROPI-CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N-dimethyl acrylamide)-b-poly(l)-lactide BCP nanoparticles by ROPI-CDSA, utilizing a two-step, one-pot approach. A dual-functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido-based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI-CDSA BCPs and provides readily accessible nanorods made with biocompatible materials.

13.
Macromol Rapid Commun ; 45(8): e2300675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38163327

RESUMEN

Despite their industrial ubiquity, polyolefin-polyacrylate block copolymers are challenging to synthesize due to the distinct polymerization pathways necessary for respective blocks. This study utilizes MILRad, metal-organic insertion light-initiated radical polymerization, to synthesize polyolefin-b-poly(methyl acrylate) copolymer by combining palladium-catalyzed insertion-coordination polymerization and atom transfer radical polymerization (ATRP). Brookhart-type Pd complexes used for the living polymerization of olefins are homolytically cleaved by blue-light irradiation, generating polyolefin-based macroradicals, which are trapped with functional nitroxide derivatives forming ATRP macroinitiators. ATRP in the presence of Cu(0), that is, supplemental activators and reducing agents , is used to polymerize methyl acrylate. An increase in the functionalization efficiency of up to 71% is demonstrated in this study by modifying the light source and optimizing the radical trapping condition. Regardless of the radical trapping efficiency, essentially quantitative chain extension of polyolefin-Br macroinitiator with acrylates is consistently demonstrated, indicating successful second block formation.


Asunto(s)
Resinas Acrílicas , Polienos , Polimerizacion , Polienos/química , Polienos/síntesis química , Resinas Acrílicas/química , Resinas Acrílicas/síntesis química , Catálisis , Polímeros/química , Polímeros/síntesis química , Paladio/química , Estructura Molecular , Acrilatos/química , Luz
14.
Macromol Rapid Commun ; : e2400178, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683103

RESUMEN

The investigation of chiral supramolecular stacking is of essential significance for the understanding of the origin of homochirality in nature. Unlike structurally well-defined amphiphilic liposomes, it remains unclear whether the solvophilic segments of the amphiphilic block copolymer play a decisive role in the construction of asymmetric superstructures. Herein, insights are presented into the stacking patterns and morphological regulation in azobenzene-containing block copolymer assemblies solely by modulating the solvophilic chain length. The solvophilic poly(methacrylic acid) (PMAA) segments of different molecular weights could cause multi-mode chirality inversions involving stacking transitions between intra-chain π-π stacking, inter-chain H- and J-aggregation. Furthermore, the length of the solvophilic PMAA also affects the morphology of the chiral supramolecular assemblies; rice grain-like micelles, worms, nanofibers, floccules, and lamellae can be prepared at different solvophilic-solvophobic balance. The comprehensive mechanism is collectively revealed by utilizing various measurement methods, such as including circular dichroism (CD), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). This study highlights the critical importance of fully dissolved solvophilic segments for the chiroptical regulation of the aggregated core, providing new insights into the arrangement of chiral supramolecular structures in polymer systems.

15.
Macromol Rapid Commun ; : e2400141, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695257

RESUMEN

Reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization of methyl methacrylate (MMA) is successfully performed in water in the presence of a poly(methacrylic acid) (PMAA) macromolecular chain transfer agent (macroCTA) leading to the formation of self-stabilized PMAA-b-PMMA amphiphilic block copolymer particles. At pH 3.7, the reactions are well-controlled with narrow molar mass distributions. Increasing the initial pH, particularly above 5.6, results in a partial loss of reactivity of the PMAA macroCTA. The effect of the degree of polymerization (DPn) of the PMMA block, the solids content, the nature of the hydrophobic segment, and the pH on the morphology of the obtained diblock copolymer particles is then investigated. Worm-like micelles are formed for a DPn of PMMA of 20 (PMMA20), while "onion-like" particles and spherical vesicles are obtained for PMMA30 and PMMA50, respectively. In contrast, spherical particles are obtained for the DPns higher than 150. This unusual evolution of particle morphologies upon increasing the DPn of the PMMA block seems to be related to hydrogen bonds between hydrophilic MAA and hydrophobic MMA units.

16.
Macromol Rapid Commun ; 45(2): e2300482, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922939

RESUMEN

Living crystallization-driven self-assembly (CDSA) has emerged as an efficient route to generate π-conjugated-polymer-based nanofibers (CPNFs) with promising applications from photocatalysis to biomedicine. However, the lack of efficient tools to endow CPNFs with morphological stability and surface tailorability becomes a frustrating hindrance for expanding application spectrum of CPNFs. Herein, a facile strategy to fabricate length-controllable OPV-based (OPV = oligo(p-phenylenevinylene)) CPNFs containing a cross-linked shell with high morphological stability and facile surface tailorability through the combination of living CDSA and thiol-ene chemistry by using OPV5 -b-PNAAM32 (PNAAM = poly(N-allyl acrylamide)) as a model is reported. Uniform fiber-like micelles with tunable length can be generated by self-seeding of living CDSA. By taking advantage of radical thiol-ene reaction between vinyls of PNAAM corona and four-arm thiols, the shell of micelles can be cross-linked with negligible destruction of structure of vinylene-containing OPV core. The resulting micelles show high morphological stability in NaCl solution and PBS buffer, even upon heating at 80 °C. The introduced extra thiol groups in the cross-linked shell can be further employed to install extra functional moieties via convenient thiol-Michael-type reaction. Given the negligible cytotoxicity of resulting CPNFs, this strategy opens an avenue to fabricate various CPNFs of diverse functionalities for biomedicine.


Asunto(s)
Micelas , Nanofibras , Polímeros/química , Cristalización , Compuestos de Sulfhidrilo/química
17.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34344828

RESUMEN

Recently, the interest in charged polymers has been rapidly growing due to their uses in energy storage and transfer devices. Yet, polymer electrolyte-based devices are not on the immediate horizon because of the low ionic conductivity. In the present study, we developed a methodology to enhance the ionic conductivity of charged block copolymers comprising ionic liquids through the electrostatic control of the interfacial layers. Unprecedented reentrant phase transitions between lamellar and A15 structures were seen, which cannot be explained by well-established thermodynamic factors. X-ray scattering experiments and molecular dynamics simulations revealed the formation of fascinating, thin ionic shell layers composed of ionic complexes. The ionic liquid cations of these complexes predominantly presented near the micellar interfaces if they had strong binding affinity with the charged polymer chains. Therefore, the interfacial properties and concentration fluctuations of the A15 structures were crucially dependent on the type of tethered acid groups in the polymers. Overall, the stabilization energies of the A15 structures were greater when enriched, attractive electrostatic interactions were present at the micellar interfaces. Contrary to the conventional wisdom that block copolymer interfaces act as "dead zone" to significantly deteriorate ion transport, this study establishes a prospective avenue for advanced polymer electrolyte having tailor-made interfaces.

18.
Nano Lett ; 23(10): 4290-4297, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37141413

RESUMEN

Supramolecular structures of matrix proteins in mineralizing tissues are known to direct the crystallization of inorganic materials. Here we demonstrate how such structures can be synthetically directed into predetermined patterns for which functionality is maintained. The study employs block copolymer lamellar patterns with alternating hydrophilic and hydrophobic regions to direct the assembly of amelogenin-derived peptide nanoribbons that template calcium phosphate nucleation by creating a low-energy interface. Results show that the patterned nanoribbons retain their ß-sheet structure and function and direct the formation of filamentous and plate-shaped calcium phosphate with high fidelity, where the phase, amorphous or crystalline, depends on the choice of mineral precursor and the fidelity depends on peptide sequence. The common ability of supramolecular systems to assemble on surfaces with appropriate chemistry combined with the tendency of many templates to mineralize multiple inorganic materials implies this approach defines a general platform for bottom-up-patterning of hybrid organic-inorganic materials.


Asunto(s)
Biomimética , Nanotubos de Carbono , Polímeros/química , Minerales , Fosfatos de Calcio/química , Péptidos/química
19.
Nano Lett ; 23(22): 10414-10422, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930644

RESUMEN

Ion-conducting membranes (ICMs) with high selectivity are important components in redox flow batteries. However it is still a challenge to break the trade-off between ion conductivity and ion selectivity, which can be resolved by the regulation of their nanostructures. Here, polyoxometalate (POM)-hybridized block copolymers (BCPs) are used as self-assembled additives to construct proton-selective nanobarriers in the ICM matrix to improve the microscopic structures and macroscopic properties of ICMs. Benefiting from the co-assembly behavior of BCPs and POMs and their cooperative noncovalent interactions with the polymer matrix, ∼50 nm ellipsoidal functional nanoassemblies with hydrophobic vanadium-shielding cores and hydrophilic proton-conducting shells are constructed in the sulfonated poly(ether ether ketone) matrix, which leads to an overall enhancement of proton conductivity, proton selectivity, and cell performance. These results present a self-assembly route to construct functional nanostructures for the modification of polymer electrolyte membranes toward emerging energy technologies.

20.
Molecules ; 29(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257304

RESUMEN

AB-type and BAB-type betaine block copolymers composed of a carboxybetaine methacrylate and a sulfobetaine methacrylate, PGLBT-b-PSPE and PSPE-b-PGLBT-b-PSPE, respectively, were synthesized by one-pot RAFT polymerization. By optimizing the concentration of the monomer, initiator, and chain transfer agent, block extension with precise ratio control was enabled and a full conversion (~99%) of betaine monomers was achieved at each step. Two sets (total degree of polymerization: ~300 and ~600) of diblock copolymers having four different PGLBT:PSPE ratios were prepared to compare the influence of block ratio and molecular weight on the temperature-responsive behavior in aqueous solution. A turbidimetry and dynamic light scattering study revealed a shift to higher temperatures of the cloud point and micelle formation by increasing the ratio of PSPE, which exhibit upper critical solution temperature (UCST) behavior. PSPE-dominant diblocks created spherical micelles stabilized by PGLBT motifs, and the transition behavior diminished by decreasing the PSPE ratio. No particular change was found in the diblocks that had an identical AB ratio. This trend reappeared in the other set whose entire molecular weight approximately doubled, and each transition point was not recognizably impacted by the total molecular weight. For triblocks, the PSPE double ends provided a higher probability of interchain attractions and resulted in a more turbid solution at higher temperatures, compared to the diblocks which had similar block ratios and molecular weights. The intermediates assumed as network-like soft aggregates eventually rearranged to monodisperse flowerlike micelles. It is expected that the method for obtaining well-defined betaine block copolymers, as well as the relationship of the block ratio and the chain conformation to the temperature-responsive behavior, will be helpful for designing betaine-based polymeric applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA