RESUMEN
Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.
Asunto(s)
Bacillus anthracis/enzimología , Bacillus anthracis/metabolismo , Hierro/metabolismo , Manganeso/metabolismo , Metaloproteasas/metabolismo , Cristalografía por Rayos X , FMN Reductasa/química , FMN Reductasa/genética , FMN Reductasa/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Mononucleótido de Flavina/química , Mononucleótido de Flavina/genética , Mononucleótido de Flavina/metabolismo , Metaloproteasas/química , Metaloproteasas/genética , Ribonucleótido ReductasasRESUMEN
Zinc metalloproteins are involved in many biological processes and play crucial biochemical roles across all domains of life. Local structure around the zinc ion, especially the coordination geometry (CG), is dictated by the protein sequence and is often directly related to the function of the protein. Current methodologies in characterizing zinc metalloproteins' CG consider only previously reported CG models based mainly on nonbiological chemical context. Exceptions to these canonical CG models are either misclassified or discarded as "outliers." Thus, we developed a less-biased method that directly handles potential exceptions without pre-assuming any CG model. Our study shows that numerous exceptions could actually be further classified and that new CG models are needed to characterize them. Also, these new CG models are cross-validated by strong correlation between independent structural and functional annotation distance metrics, which is partially lost if these new CGs models are ignored. Furthermore, these new CG models exhibit functional propensities distinct from the canonical CG models.
Asunto(s)
Biología Computacional/métodos , Metaloproteínas/química , Zinc/química , Algoritmos , Metaloproteínas/metabolismo , Relación Estructura-Actividad , Zinc/metabolismoRESUMEN
Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115â 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals.