Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611706

RESUMEN

In this work, UV-Vis spectrophotometry, High Resolution Scanning Transmission Electron Microscopes and selected experimental conditions were used to screen the colloidal system. The obtained results complement the established knowledge regarding the mechanism of nanoparticle formation. The process of gold nanoparticles formation involves a two-step reduction of Au ions to Au(0); atom association and metastable cluster formation; autocatalytic cluster growth; ultra-small particle formation (1-2 nm, in diameter); particle growth and larger particles formation; and further autocatalytic crystal growth (D > 100 nm). As a reductant of Au(III) ions, a cinnamon extract was used. It was confirmed that eugenol as one of the cinnamon extract compounds is responsible for fast Au(III) ion reduction, whereas cinnamaldehyde acts as a gold-particle stabilizer. Spectrophotometry studies were carried out to track kinetic traces of gold nanoparticle (D > 2 nm) formation in the colloidal solution. Using the Watzky-Finke model, the rate constants of nucleation and autocatalytic growth were determined. Moreover, the values of energy, enthalpy and entropy of activation for stages related to the process of nanoparticle formation (Index 1 relates to nucleation, and Index 2 relates to the growth) were determined and found to be E1 = 70.6 kJ, E2 = 19.6 kJ, ΔH1 = 67.9 kJ/mol, ΔH2 = 17 kJ/mol, ΔS1 = -76.2 J/(K·mol), ΔS2 = -204.2 J/(K·mol), respectively. In this work the limitation of each technique (spectrophotometry vs. HRSTEM) as a complex tool to understand the dynamic of the colloidal system was discussed.

2.
Angew Chem Int Ed Engl ; : e202415684, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259433

RESUMEN

The stepwise reduction of the highly contorted truxene-based triphosphaalkene 1 using KC8 led to the isolation of mono-, di-and tri-anionic species. The solid-state molecular structures of mono- and diradical anionic species were elucidated by single crystal X-ray diffractions, revealing elongated P-C bonds and a pronounced "indene" aromatization compared to the parent system. All three radical species displayed distinct Electron Paramagnetic Resonance (EPR) spectra, providing compelling evidence for the open-shell electronic configuration of both the diradical and triradical species-an observation unprecedented in any previously reported phosphorous-based anionic polyradicals. Mulliken spin density calculations revealed a dominant localization of radical spin on a single phosphorous atom in the monoanion. In the dianion, spin localization is observed on two phosphorous atoms (~34% each), with a minor contribution from the third phosphorous (0.13%), while the trianion demonstrates a uniform distribution of spin density (~30%) across each phosphorous atom.

3.
Ecotoxicol Environ Saf ; 265: 115522, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769582

RESUMEN

Chemical reduction combined with microbial stabilization is a green and efficient method for the remediation of hexavalent chromium (Cr(VI)) contaminated soil. In this study, the combination of ferrous sulfate with kitchen waste digestate was applied to reduce and immobilize Cr(VI) in chromite ore processing residue (COPR) contaminated soils, and systematically evaluated the remediation performance of Cr(VI) compared with several typical reducing agents (i.e., ferrous sulfate, zero valent iron, sodium thiosulfate, ferrous sulfide, and calcium polysulfide). The results showed that the combination of ferrous sulfate and digestate had superior advantages of a lower dosage of reducing agent and a long-term remediation effect compared to other single chemical reductants. Under an Fe(II):Cr(VI) molar ratio of 3:1% and 4% digestate (wt), the content of Cr(VI) in the soil decreased to 5.07 mg/kg after 60 days of remediation. Meanwhile, the leaching concentrations of Cr(VI) were below detection limit, which can meet the hazardous waste toxicity leaching standard. The risk level of Cr pollution was decreased from very high risk to low risk. The X-ray photoelectron spectroscopy (XPS) results further demonstrated that the combined treatments were beneficial to Cr(VI) reduction and stabilization. The abundance of bacteria with Cr(VI) reducing ability was higher than other treatments. Moreover, the high abundance of carbon and nitrogen metabolism in the combined treatments demonstrated that the addition of digestate was beneficial to the recovery and flourishing of Cr(VI)-reducing related microorganisms in COPR contaminated soils. This work provided an alternative way on Cr(VI) remediation in COPR contaminated soils.

4.
Sensors (Basel) ; 23(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37050752

RESUMEN

With rapidly increasing environmental pollution, there is an urgent need for the development of fast, low-cost, and effective sensing devices for the detection of various organic and inorganic substances. Silver nanoparticles (AgNPs) are well known for their superior optoelectronic and physicochemical properties, and have, therefore, attracted a great deal of interest in the sensor arena. The introduction of AgNPs onto the surface of two-dimensional (2D) structures, incorporation into conductive polymers, or within three-dimensional (3D) nanohybrid architectures is a common strategy to fabricate novel platforms with improved chemical and physical properties for analyte sensing. In the first section of this review, the main wet chemical reduction approaches for the successful synthesis of functional AgNPs for electrochemical sensing applications are discussed. Then, a brief section on the sensing principles of voltammetric and amperometric sensors is given. The current utilization of silver nanoparticles and silver-based composite nanomaterials for the fabrication of voltammetric and amperometric sensors as novel platforms for the detection of environmental pollutants in water matrices is summarized. Finally, the current challenges and future directions for the nanosilver-based electrochemical sensing of environmental pollutants are outlined.

5.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373255

RESUMEN

A high perovskite activity is sought for use in magnetic applications. In this paper, we present the simple synthesis of (2.5% and 5%) Tellurium-impregnated-LaCoO3 (Te-LCO), Te and LaCoO3 (LCO) by using a ball mill, chemical reduction, and hydrothermal synthesis, respectively. We also explored the structure stability along with the magnetic properties of Te-LCO. Te has a rhombohedral crystal structure, whereas Te-LCO has a hexagonal crystal system. The reconstructed Te was imbued with LCO that was produced by hydrothermal synthesis; as the concentration of the imbuing agent grew, the material became magnetically preferred. According to the X-ray photoelectron spectra, the oxidation state of the cobaltite is one that is magnetically advantageous. As a result of the fact that the creation of oxygen-deficient perovskites has been shown to influence the mixed (Te4+/2-) valence state of the incorporated samples, it is abundantly obvious that this process is of utmost significance. The TEM image confirms the inclusion of Te in LCO. The samples start out in a paramagnetic state (LCO), but when Te is added to the mixture, the magnetic state shifts to a weak ferromagnetic one. It is at this point that hysteresis occurs due to the presence of Te. Despite being doped with Mn in our prior study, rhombohedral LCO retains its paramagnetic characteristic at room temperature (RT). As a result, the purpose of this study was to determine the impacts of RT field dependency of magnetization (M-H) for Te-impregnated LCO in order to improve the magnetic properties of RT because it is a low-cost material for advanced multi-functional and energy applications.

6.
Molecules ; 28(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37446593

RESUMEN

The role of nanotechnology is increasingly important in our society. Through it, scientists are acquiring the ability to understand the structure and properties of materials and manipulate them at the scale of atoms and molecules. Nanomaterials are at the forefront of the rapidly growing field of nanotechnology. The synthesis of nanostructured materials, especially metallic nanoparticles, has attracted tremendous interest over the past decade due to their unique properties, making these materials excellent and indispensable in many areas of human activity. These special properties can be attributed to the small size and large specific surface area of nanoparticles, which are very different from those of bulk materials. Nanoparticles of different sizes and shapes are needed for many applications, so a variety of protocols are required to produce monodisperse nanoparticles with controlled morphology. The purpose of this review is firstly to introduce the reader to the basic aspects related to the field of nanotechnology and, secondly, to discuss metallic nanoparticles in greater detail. This article explains the basic concepts of nanotechnology, introduces methods for synthesizing nanoparticles, and describes their types, properties, and possible applications. Of many methods proposed for the synthesis of metal nanoparticles, a chemical reduction is usually preferred because it is easy to perform, cost-effective, efficient, and also allows control of the structural parameters through optimization of the synthesis conditions. Therefore, a chemical reduction method is discussed in more detail-each factor needed for the synthesis of nanoparticles by chemical reduction is described in detail, i.e., metal precursors, solvents, reducing agents, and stabilizers. The methods that are used to characterize nanomaterials are described. Finally, based on the available literature collection, it is shown how changing the synthesis parameters/methods affects the final characteristics of nanoparticles.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Humanos , Nanotecnología/métodos , Nanopartículas del Metal/química
7.
Molecules ; 28(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37764398

RESUMEN

Volatile methyl siloxanes (VMS), which are considered to be the most troublesome impurities in current biogas-cleaning technologies, need to be removed. In this study, we fabricated a series of Fe3O4-urea-modified reduced graphene-oxide aerogels (Fe3O4-urea-rGOAs) by using industrial-grade graphene oxide as the raw material. A fixed-bed dynamic adsorption setup was built, and the adsorption properties of the Fe3O4-urea-rGOAs for hexamethyldisiloxane (L2, as a VMS model pollutant) were studied. The properties of the as-prepared samples were investigated by employing various characterization techniques (SEM, TEM, FTIR, XRD, Raman spectroscopy, and N2 adsorption/desorption techniques). The results showed that the Fe3O4-urea-rGOA-0.4 had a high specific surface area (188 m2 g-1), large porous texture (0.77 cm3 g-1), and the theoretical maximum adsorption capacity for L2 (146.5 mg g-1). The adsorption capacity considerably increased with a decrease in the bed temperature of the adsorbents, as well as with an increase in the inlet concentration of L2. More importantly, the spent Fe3O4-urea-rGOA adsorbent could be readily regenerated and showed an excellent adsorption performance. Thus, the proposed Fe3O4-urea-rGOAs are promising adsorbents for removing the VMS in biogas.

8.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903653

RESUMEN

Hexavalent chromium (Cr(VI)) is a toxic, mutagenic, teratogenic, and carcinogenic species. Its origin is in industrial activities. Therefore, its effective control is realized on a source basis. Although chemical methods proved effective in removing Cr(VI) from wastewaters, more economic solutions with a minimum sludge production have been sought. Among them, the use of electrochemical processes has emerged as a viable solution to the problem. Much research was conducted in this area. The aim of this review paper is to make a critical evaluation of the literature on Cr(VI) removal by electrochemical methods, particularly electrocoagulation with sacrificial electrodes, and to assess the present data as well as to point out the areas that need further elaboration. Following the review of the theoretical concepts of electrochemical processes, the literature on the electrochemical removal of Cr(VI) was evaluated on the basis of important elements of the system. Among them are initial pH, initial Cr(VI) concentration, current density, type and concentration of supporting electrolyte, and the material of electrodes and their operating characteristics and process kinetics. Dimensionally stable electrodes that realize the reduction process without producing any sludge were evaluated separately. Applications of electrochemical methods to a wide spectrum of industrial effluents were also assessed.

9.
J Environ Sci (China) ; 127: 42-59, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522073

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame retardants, which had attracted amounts of attention due to their harmful characteristics of high toxicity, environmental persistence and potential bioaccumulation. Many chemical reductive debromination technologies have been developed for the debromination of PBDEs, including photolysis, photocatalysis, electrocatalysis, zero-valent metal reduction, chemically catalytic reduction and mechanochemical method. This review aims to provide information about the degradation thermodynamics and kinetics of PBDEs and summarize the degradation mechanisms in various systems. According to the comparative analysis, the rapid debromination to generate bromine-free products in an electron-transfer process, of which photocatalysis is a representative one, is found to be relatively difficult, because the degradation rate of PBDEs depended on the Br-rich phenyl ring with the lowest unoccupied molecular orbital (LUMO) localization. On the contrary, the complete debromination occurs easily in other systems with active hydrogen atoms as the main reactive species, such as chemically catalytic reduction systems. The review provides the knowledge on the chemical reductive technique of PBDEs, which would greatly help not only clarify the degradation mechanism but also design the more efficient system for the rapid and deep debromination of PBDEs in the future.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Éteres Difenilos Halogenados/análisis , Bromo , Metales/química , Cinética
10.
Chemistry ; 28(9): e202104194, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-34890088

RESUMEN

Chemical reduction of pentacene (C22 H14 , 1) with Group 1 metals ranging from Li to Cs revealed that 1 readily undergoes a two-fold reduction to afford a doubly-reduced 12- anion in THF. With the help of 18-crown-6 ether used as a secondary coordinating agent, five π-complexes of 12- with different alkali metal counterions have been isolated and fully characterized. This series of complexes enables the first evaluation of alkali-metal ion binding patterns and structural changes of the 12- dianion based on the crystallographically confirmed examples. The difference in coordination of the smallest Li+ ion vs. heavier Group 1 congeners has been demonstrated. In addition, the use of benzo-15-crown-5 in the reaction of 1 with Na metal allowed the isolation of the unique solvent-separated ion product with a "naked" dianion, 12- . The detailed structural analyses of the series revealed the C-C bond alteration and core deformation of pentacene upon two-fold reduction and complexation. The negative charge localization at the central six-membered ring of 12- identified by theoretical calculations corroborates with the X-ray crystallographic results. Subsequent in-depth theoretical analysis provided a detailed description of changes in the electronic structure and aromaticity of pentacene upon reduction.

11.
Environ Res ; 214(Pt 4): 114203, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030923

RESUMEN

The selective reduction of nitrite (NO2-) to nitrogen by chemical reductant is a desirable strategy to remove NO2- from polluted water and wastewater. However, the residue and reuse of chemical reductant are two main issues to be addressed. Herein, a novel polyaniline-carbon nanotubes composite (PANI-CNTs) was developed by in-situ polymerization to selectively reduce NO2- to nitrogen gas (N2). The used PANI-CNTs could be reused after regeneration with NaBH4. The PANI-CNTs could reduce NO2- with 93.9% N2 selectivity at initial pH of 6.8. The NO2- removal efficiency only decreased by 12.08% after five cycles of reduction/regeneration. The interconversion between imine nitrogen (-N) and amine nitrogen (-NH-) groups induced the chemical reduction of NO2- and regeneration of PANI-CNTs. PANI-CNTs exhibited an excellent performance for the removal of NO2- in the presence of competitive ions and in actual water and wastewater samples. This new PANI-CNTs composite may have great potential for water purification and wastewater denitrification.


Asunto(s)
Nanotubos de Carbono , Nitritos , Compuestos de Anilina , Concentración de Iones de Hidrógeno , Nanotubos de Carbono/química , Nitrógeno , Dióxido de Nitrógeno , Sustancias Reductoras , Aguas Residuales , Agua
12.
Angew Chem Int Ed Engl ; 61(10): e202115747, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34875130

RESUMEN

The chemical reduction of π-conjugated bilayer nanographene 1 (C138 H120 ) with K and Rb in the presence of 18-crown-6 affords [K+ (18-crown-6)(THF)2 ][{K+ (18-crown-6)}2 (THF)0.5 ][C138 H122 3- ] (2) and [Rb+ (18-crown-6)2 ][{Rb+ (18-crown-6)}2 (C138 H122 3- )] (3). Whereas K+ cations are fully solvent-separated from the trianionic core thus affording a "naked" 1.3 - anion, Rb+ cations are coordinated to the negatively charged layers of 1.3 - . According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site-specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction-induced site-specific hydrogenation provokes dramatic changes in the (electronic) structure of 1 as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.

13.
Small ; 17(6): e2006882, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33470524

RESUMEN

The inherent features of covalent organic frameworks (COFs) make them highly attractive for uranium recovery applications. A key aspect yet to be explored is how to improve the selectivity and efficiency of COFs for recovering uranium from seawater. To achieve this goal, a series of robust and hydrophilic benzoxazole-based COFs is developed (denoted as Tp-DBD, Bd-DBD, and Hb-DBD) as efficient adsorbents for photo-enhanced targeted uranium recovery. Benefiting from the hydroxyl groups and the formation of benzoxazole rings, the hydrophilic Tp-DBD shows outstanding stability and chemical reduction properties. Meanwhile, the synergistic effect of the hydroxyl groups and the benzoxazole rings in the π-conjugated frameworks significantly decrease the optical band gap, and improve the affinity and capacity to uranium recovery. In seawater, the adsorption capacity of uranium is 19.2× that of vanadium, a main interfering metal in uranium extraction.

14.
J Environ Manage ; 286: 112130, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33684804

RESUMEN

Silver nanoparticles doped with FCNT-TiO2 heterogeneous catalyst was prepared via one-step chemical reduction process and their efficacy was tested for hydrogen production under solar simulator. Crystallinity, purity, optical properties, and morphologies of the catalysts were examined by X-Ray diffraction, Raman spectroscopy, UV-Visible diffuse reflectance spectra, and Transmission Electron Microscopy. The chemical states and interface interactions were studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The optimized catalyst showed 19.2 mmol g-1 h-1 of hydrogen production, which is 28.5 and 7 times higher than the pristine TiO2 nanoparticles and FCNT-TiO2 nanocomposite, respectively. The optimized catalyst showed stability up to 50 h under the solar simulator irradiation. The natural solar light irradiated catalyst showed ~2.2 times higher hydrogen production rate than the solar simulator irradiation. A plausible reaction mechanism of Ag NPs/FCNT-TiO2 photocatalyst was elucidated by investigating the beneficial co-catalytic role of Ag NPs and FCNTs for enhanced hydrogen production.


Asunto(s)
Nanopartículas del Metal , Plata , Catálisis , Hidrógeno , Luz , Titanio
15.
Angew Chem Int Ed Engl ; 60(48): 25445-25453, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34554612

RESUMEN

The stepwise chemical reduction of a molecular warped nanographene (WNG) having a negatively curved π-surface and defined C80 H30 composition with Cs metal used as the reducing and complexing agent allowed the isolation of three different reduced states with one, two, and three electrons added to its π-conjugated system. This provided a unique series of nanosized carbanions with increasing negative charge for in-depth structural analysis of consequences of controlled electron charging of non-planar nanographenes, using X-ray crystallographic and computational tools. The 3D molecular electrostatic potential (MEP) maps identified the negative charge localization at the central part of the WNG surface where selective coordination of Cs+ ions is confirmed crystallographically. In-depth theoretical investigation revealed a complex response of the WNG to the stepwise electron acquisition. The extended and contorted π-surface of the WNG undergoes subtle swinging distortions that are accompanied by notable changes in the electronic structure and site-dependent aromaticity of the resulting carbanions.

16.
Angew Chem Int Ed Engl ; 60(20): 11201-11205, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33617079

RESUMEN

Chemical reduction of a naphthylene macrocycle, [6]cyclo-2,7-naphthylene ([6]CNAP, 1), with alkali metals, Li and K, revealed the accessibility of the doubly-reduced state of 1. The macrocyclic 12- anion was isolated in different coordination environments and crystallographically characterized. The single-crystal X-ray diffraction confirmed the formation of contact-ion complexes with one Li+ and two K+ ions in THF, and a "naked" dianion in the solvent-separated ion product with K+ ions in the presence of 18-crown-6 ether. The detailed structural analysis of 12- showed that the π-conjugation over the biaryl linkages between naphthylene panels were enhanced upon two-fold reduction, which was rationally explained by theoretical calculations.

17.
Anal Bioanal Chem ; 412(6): 1441-1451, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31950238

RESUMEN

A prior method of mass labeling ketone-/aldehyde-containing species in natural dissolved organic matter (DOM) is further developed and applied. This application involved the treatment of Suwannee River fulvic acid (SRFA) with increasing concentrations of sodium borodeuteride (NaBD4), followed by detection of reduced species via negative mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). The extent of reduction, as determined by ESI FTICR MS, resulting from increasing concentrations of NaBD4 correlated well with changes in the absorption and emission spectra of the corresponding untreated and borodeuteride-reduced samples, providing evidence that ketone/aldehyde functional groups contribute substantially to the bulk optical properties of SRFA. Furthermore, the differences in the reactivity and abundance of ketone-/aldehyde-containing species for various regions in Van Krevelen plots were revealed, thus showing how this mass labeling method can be used to provide more detailed structural information about components within complex DOM samples than that provided by the determination and analysis of molecular formulae alone. Graphical abstract.

18.
Angew Chem Int Ed Engl ; 59(37): 15923-15927, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32492236

RESUMEN

Chemical reduction of a benzo-fused double [7]helicene (1) with two alkali metals, K and Rb, provided access to three different reduced states of 1. The doubly-reduced helicene 12- has been characterized by single-crystal X-ray diffraction as a solvent-separated ion triplet with two potassium counterions. The triply- and tetra-reduced helicenes, 13- and 14- , have been crystallized together in an equimolar ratio and both form the contact-ion complexes with two Rb+ ions each, leaving three remaining Rb+ ions wrapped by crown ether and THF molecules. As structural consequence of the stepwise reduction of 1, the central axis of helicene becomes more compressed upon electron addition (1.42 Šin 14- vs. 2.09 Šin 1). This is accompanied by an extra core twist, as the peripheral dihedral angle increases from 16.5° in 1 to 20.7° in 14- . Theoretical calculations provided the pattern of negative charge build-up and distribution over the contorted helicene framework upon each electron addition, and the results are consistent with the X-ray crystallographic and NMR spectroscopic data.

19.
Chemistry ; 25(62): 14140-14147, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31390107

RESUMEN

One-electron reduction of corannulene, C20 H10 , with Li metal in diglyme resulted in crystallization of [{Li+ (diglyme)2 }4 (C20 H10 .- )2 (C20 H10 -C20 H10 )2- ] (1), as revealed by single-crystal X-ray diffraction. This hybrid product contains two corannulene monoanion-radicals along with a dianionic dimer, crystallized with four Li+ ions wrapped by diglyme molecules. The dimeric (C20 H10 -C20 H10 )2- anion provides the first crystallographically confirmed example of spontaneous radical dimerization for C20 H10 .- . The C-C bond length between the two C20 H10 .- bowls of 1.588(5) Šis consistent with the single σ-bond character of the linker. The trans-disposition of two bowls in the centrosymmetric (C20 H10 -C20 H10 )2- dimer is observed with the torsion angle around the central C-C bond of 180°. Comprehensive theoretical analysis of formation/decomposition processes of the dimeric dianion has been carried out in order to evaluate the nature of bonding and energetics of the C20 H10 .- coupling. It is found that such σ-bonded dimers are thermodynamically unstable due to large preparation energy and repulsive Pauli component of the bonding, but kinetically persistent due to a high energy barrier provided by the existing spin-crossing point.

20.
Angew Chem Int Ed Engl ; 58(35): 12107-12111, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31251429

RESUMEN

Mono- and dianions of 2-tert-butyl-3a2 -azapentabenzo[bc,ef,hi,kl,no]corannulene (1 a) were synthesized by chemical reduction with sodium and cesium metals, and crystallized as the corresponding salts in the presence of 18-crown-6 ether. X-ray diffraction analysis of the sodium salt, [{Na+ (18-crown-6)(THF)2 }3 {Na+ (18-crown-6)(THF)}(1 a2- )2 ], revealed the presence of a naked dianion. In contrast, controlled reaction of 1 a with Cs allowed the isolation of singly and doubly reduced forms of 1 a, both forming π-complexes with cesium ions in the solid state. In [{Cs+ (18-crown-6)}(1 a- )]⋅THF, asymmetric binding of the Cs+ ion to the concave surface of 1 a- is observed, whereas in [{Cs+ (18-crown-6)}2 (1 a2- )], two Cs+ ions bind to both the concave and convex surfaces of the dianion. The present study provides the first successful isolation and characterization of the reduced products of heteroatom-containing buckybowl molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA