Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.822
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38070510

RESUMEN

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Asunto(s)
Electroencefalografía , Parvalbúminas , Sueño , Animales , Ratones , Neuronas Colinérgicas/fisiología , Lóbulo Frontal/metabolismo , Parvalbúminas/metabolismo , Sueño/fisiología , Vigilia/fisiología
2.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063486

RESUMEN

Cholinergic signaling plays a crucial role in the regulation of adult hippocampal neurogenesis; however, the mechanisms by which acetylcholine mediates neurogenic effects are not completely understood. Here, we report the expression of muscarinic acetylcholine receptor subtype M4 (M4 mAChR) on a subpopulation of neural precursor cells (NPCs) in the adult mouse hippocampus, and demonstrate that its pharmacological stimulation promotes their proliferation, thereby enhancing the production of new neurons in vivo. Using a targeted ablation approach, we also show that medial septum (MS) and the diagonal band of Broca (DBB) cholinergic neurons support both the survival and morphological maturation of adult-born neurons in the mouse hippocampus. Although the systemic administration of an M4-selective allosteric potentiator fails to fully rescue the MS/DBB cholinergic lesion-induced decrease in hippocampal neurogenesis, it further exacerbates the impairment in the morphological maturation of adult-born neurons. Collectively, these findings reveal stage-specific roles of M4 mAChRs in regulating adult hippocampal neurogenesis, uncoupling their positive role in enhancing the production of new neurons from the M4-induced inhibition of their morphological maturation, at least in the context of cholinergic signaling dysfunction.


Asunto(s)
Células-Madre Neurales , Receptor Muscarínico M4 , Ratones , Animales , Receptor Muscarínico M4/metabolismo , Células-Madre Neurales/metabolismo , Hipocampo/metabolismo , Neurogénesis/genética , Colinérgicos/metabolismo , Colinérgicos/farmacología , Proliferación Celular
3.
Immunity ; 48(5): 963-978.e3, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768179

RESUMEN

Regulated antimicrobial peptide expression in the intestinal epithelium is key to defense against infection and to microbiota homeostasis. Understanding the mechanisms that regulate such expression is necessary for understanding immune homeostasis and inflammatory disease and for developing safe and effective therapies. We used Caenorhabditis elegans in a preclinical approach to discover mechanisms of antimicrobial gene expression control in the intestinal epithelium. We found an unexpected role for the cholinergic nervous system. Infection-induced acetylcholine release from neurons stimulated muscarinic signaling in the epithelium, driving downstream induction of Wnt expression in the same tissue. Wnt induction activated the epithelial canonical Wnt pathway, resulting in the expression of C-type lectin and lysozyme genes that enhanced host defense. Furthermore, the muscarinic and Wnt pathways are linked by conserved transcription factors. These results reveal a tight connection between the nervous system and the intestinal epithelium, with important implications for host defense, immune homeostasis, and cancer.


Asunto(s)
Acetilcolina/inmunología , Caenorhabditis elegans/inmunología , Mucosa Intestinal/inmunología , Vía de Señalización Wnt/inmunología , Acetilcolina/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/inmunología , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Expresión Génica/inmunología , Homeostasis/genética , Homeostasis/inmunología , Interacciones Huésped-Patógeno/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/inmunología , Neuronas/metabolismo , Vía de Señalización Wnt/genética
4.
Proc Natl Acad Sci U S A ; 121(1): e2317987121, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147559

RESUMEN

Bidirectional homeostatic plasticity allows neurons and circuits to maintain stable firing in the face of developmental or learning-induced perturbations. In the primary visual cortex (V1), upward firing rate homeostasis (FRH) only occurs during active wake (AW) and downward during sleep, but how this behavioral state-dependent gating is accomplished is unknown. Here, we focus on how AW enables upward FRH in V1 of juvenile Long Evans rats. A major difference between quiet wake (QW), when upward FRH is absent, and AW, when it is present, is increased cholinergic (ACh) tone, and the main cholinergic projections to V1 arise from the horizontal diagonal band of the basal forebrain (HDB ACh). We therefore chemogenetically inhibited HDB ACh neurons while inducing upward homeostatic compensation using direct activity-suppression in V1. We found that synaptic scaling up and intrinsic homeostatic plasticity, two important cellular mediators of upward FRH, were both impaired when HDB ACh neurons were inhibited. Most strikingly, HDB ACh inhibition flipped the sign of intrinsic plasticity so that it became anti-homeostatic, and this effect was phenocopied by knockdown of the M1 ACh receptor in V1, indicating that this modulation of intrinsic plasticity is the result of direct actions of ACh within V1. Finally, we found that upward FRH induced by visual deprivation was completely prevented by HDB ACh inhibition. Together, our results show that HDB ACh modulation is a key enabler of upward homeostatic plasticity and FRH, and more broadly suggest that neuromodulatory inputs can segregate upward and downward homeostatic plasticity into distinct behavioral states.


Asunto(s)
Prosencéfalo Basal , Corteza Visual , Ratas , Animales , Ratas Long-Evans , Roedores , Colinérgicos/farmacología , Homeostasis , Corteza Visual/fisiología , Plasticidad Neuronal/fisiología
5.
Proc Natl Acad Sci U S A ; 120(28): e2218830120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399414

RESUMEN

The cholinergic system of the basal forebrain plays an integral part in behaviors ranging from attention to learning, partly by altering the impact of noise in neural populations. The circuit computations underlying cholinergic actions are confounded by recent findings that forebrain cholinergic neurons corelease both acetylcholine (ACh) and GABA. We have identified that corelease of ACh and GABA by cholinergic inputs to the claustrum, a structure implicated in the control of attention, has opposing effects on the electrical activity of claustrum neurons that project to cortical vs. subcortical targets. These actions differentially alter neuronal gain and dynamic range in the two types of neurons. In model networks, the differential effects of ACh and GABA toggle network efficiency and the impact of noise on population dynamics between two different projection subcircuits. Such cholinergic switching between subcircuits provides a potential logic for neurotransmitter corelease in implementing behaviorally relevant computations.


Asunto(s)
Acetilcolina , Colinérgicos , Acetilcolina/metabolismo , Prosencéfalo/metabolismo , Neuronas Colinérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Lógica
6.
J Neurosci ; 44(8)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383485

RESUMEN

The medial nucleus of the trapezoid body (MNTB) has been intensively investigated as a primary source of inhibition in brainstem auditory circuitry. MNTB-derived inhibition plays a critical role in the computation of sound location, as temporal features of sounds are precisely conveyed through the calyx of Held/MNTB synapse. In adult gerbils, cholinergic signaling influences sound-evoked responses of MNTB neurons via nicotinic acetylcholine receptors (nAChRs; Zhang et al., 2021) establishing a modulatory role for cholinergic input to this nucleus. However, the cellular mechanisms through which acetylcholine (ACh) mediates this modulation in the MNTB remain obscure. To investigate these mechanisms, we used whole-cell current and voltage-clamp recordings to examine cholinergic physiology in MNTB neurons from Mongolian gerbils (Meriones unguiculatus) of both sexes. Membrane excitability was assessed in brain slices, in pre-hearing (postnatal days 9-13) and post-hearing onset (P18-20) MNTB neurons during bath application of agonists and antagonists of nicotinic (nAChRs) and muscarinic receptors (mAChRs). Muscarinic activation induced a potent increase in excitability most prominently prior to hearing onset with nAChR modulation emerging at later time points. Pharmacological manipulations further demonstrated that the voltage-gated K+ channel KCNQ (Kv7) is the downstream effector of mAChR activation that impacts excitability early in development. Cholinergic modulation of Kv7 reduces outward K+ conductance and depolarizes resting membrane potential. Immunolabeling revealed expression of Kv7 channels as well as mAChRs containing M1 and M3 subunits. Together, our results suggest that mAChR modulation is prominent but transient in the developing MNTB and that cholinergic modulation functions to shape auditory circuit development.


Asunto(s)
Receptores Nicotínicos , Cuerpo Trapezoide , Animales , Femenino , Masculino , Cuerpo Trapezoide/fisiología , Gerbillinae , Transmisión Sináptica/fisiología , Neuronas/fisiología , Receptores Nicotínicos/metabolismo , Colinérgicos , Vías Auditivas/fisiología
7.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38594069

RESUMEN

The brain bidirectionally communicates with the gut to control food intake and energy balance, which becomes dysregulated in obesity. For example, endocannabinoid (eCB) signaling in the small-intestinal (SI) epithelium is upregulated in diet-induced obese (DIO) mice and promotes overeating by a mechanism that includes inhibiting gut-brain satiation signaling. Upstream neural and molecular mechanism(s) involved in overproduction of orexigenic gut eCBs in DIO, however, are unknown. We tested the hypothesis that overactive parasympathetic signaling at the muscarinic acetylcholine receptors (mAChRs) in the SI increases biosynthesis of the eCB, 2-arachidonoyl-sn-glycerol (2-AG), which drives hyperphagia via local CB1Rs in DIO. Male mice were maintained on a high-fat/high-sucrose Western-style diet for 60 d, then administered several mAChR antagonists 30 min prior to tissue harvest or a food intake test. Levels of 2-AG and the activity of its metabolic enzymes in the SI were quantitated. DIO mice, when compared to those fed a low-fat/no-sucrose diet, displayed increased expression of cFos protein in the dorsal motor nucleus of the vagus, which suggests an increased activity of efferent cholinergic neurotransmission. These mice exhibited elevated levels of 2-AG biosynthesis in the SI, that was reduced to control levels by mAChR antagonists. Moreover, the peripherally restricted mAChR antagonist, methylhomatropine bromide, and the peripherally restricted CB1R antagonist, AM6545, reduced food intake in DIO mice for up to 24 h but had no effect in mice conditionally deficient in SI CB1Rs. These results suggest that hyperactivity at mAChRs in the periphery increases formation of 2-AG in the SI and activates local CB1Rs, which drives hyperphagia in DIO.


Asunto(s)
Dieta Alta en Grasa , Endocannabinoides , Glicéridos , Ratones Endogámicos C57BL , Obesidad , Transducción de Señal , Transmisión Sináptica , Animales , Endocannabinoides/metabolismo , Masculino , Obesidad/metabolismo , Ratones , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/fisiología , Glicéridos/metabolismo , Ácidos Araquidónicos/metabolismo , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de los fármacos , Antagonistas Muscarínicos/farmacología , Receptores Muscarínicos/metabolismo , Eje Cerebro-Intestino/fisiología
8.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38719447

RESUMEN

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Asunto(s)
Giro del Cíngulo , Macaca mulatta , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Masculino , Femenino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Acetilcolina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
9.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38508712

RESUMEN

The mammalian hippocampus exhibits spontaneous sharp wave events (1-30 Hz) with an often-present superimposed fast ripple oscillation (120-220 Hz) to form a sharp wave ripple (SWR) complex. During slow-wave sleep or quiet restfulness, SWRs result from the sequential spiking of hippocampal cell assemblies initially activated during learned or imagined experiences. Additional cortical/subcortical areas exhibit SWR events that are coupled to hippocampal SWRs, and studies in mammals suggest that coupling may be critical for the consolidation and recall of specific memories. In the present study, we have examined juvenile male and female zebrafish and show that SWR events are intrinsically generated and maintained within the telencephalon and that their hippocampal homolog, the anterodorsolateral lobe (ADL), exhibits SW events with ∼9% containing an embedded ripple (SWR). Single-cell calcium imaging coupled to local field potential recordings revealed that ∼10% of active cells in the dorsal telencephalon participate in any given SW event. Furthermore, fluctuations in cholinergic tone modulate SW events consistent with mammalian studies. Moreover, the basolateral amygdala (BLA) homolog exhibits SW events with ∼5% containing an embedded ripple. Computing the SW peak coincidence difference between the ADL and BLA showed bidirectional communication. Simultaneous coupling occurred more frequently within the same hemisphere, and in coupled events across hemispheres, the ADL more commonly preceded BLA. Together, these data suggest conserved mechanisms across species by which SW and SWR events are modulated, and memories may be transferred and consolidated through regional coupling.


Asunto(s)
Hipocampo , Pez Cebra , Animales , Masculino , Hipocampo/fisiología , Femenino , Amígdala del Cerebelo/fisiología , Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología
10.
Trends Immunol ; 43(9): 718-727, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931611

RESUMEN

Research focusing on adipose immunometabolism has been expanded from inflammation in white fat during obesity development to immune cell function regulating thermogenic fat, energy expenditure, and systemic metabolism. This opinion discusses our current understanding of how resident immune cells within the thermogenic fat niche may regulate whole-body energy homeostasis. Furthermore, various types of immune cells can synthesize acetylcholine (ACh) and regulate important physiological functions. We highlight a unique subset of cholinergic macrophages within subcutaneous adipose tissue, termed cholinergic adipose macrophages (ChAMs); these macrophages interact with beige adipocytes through cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) signaling to induce adaptive thermogenesis. We posit that these newly identified thermoregulatory macrophages may broaden our view of immune system functions for maintaining metabolic homeostasis and potentially treating obesity and metabolic disorders.


Asunto(s)
Adipocitos Beige , Termogénesis , Tejido Adiposo , Colinérgicos , Humanos , Obesidad
11.
FASEB J ; 38(9): e23641, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690717

RESUMEN

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Asunto(s)
Acetilcolinesterasa , Queratinocitos , MicroARNs , Piel , Rayos Ultravioleta , Urticaria , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/genética , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Piel/efectos de la radiación , Piel/metabolismo , Urticaria/metabolismo , Urticaria/etiología , Ratones , Acetilcolina/metabolismo , Masculino
12.
FASEB J ; 38(1): e23374, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161283

RESUMEN

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and ß2 subunits (α7ß2-nAChR subtype). Basal forebrain cholinergic neurons express α7ß2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-ß associated with early Alzheimer's disease. Additional work indicates that α7ß2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7ß2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7ß2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7ß2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7ß2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7ß2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7ß2-nAChR and detailed investigations of their physiological roles.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Colinérgicos , Sitios de Unión , Neuronas GABAérgicas/metabolismo , Antagonistas Nicotínicos/farmacología
13.
Brain ; 147(1): 255-266, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37975822

RESUMEN

Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedad por Cuerpos de Lewy , Humanos , Masculino , Anciano , Femenino , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/patología , Estudios Transversales , Enfermedades del Sistema Nervioso Autónomo/diagnóstico por imagen , Enfermedades del Sistema Nervioso Autónomo/etiología , Páncreas/patología , Colinérgicos , Colon/patología
14.
Brain ; 147(7): 2308-2324, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38437860

RESUMEN

Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.


Asunto(s)
Neuronas Colinérgicas , Progresión de la Enfermedad , Enfermedad por Cuerpos de Lewy , Enfermedad por Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Humanos , Neuronas Colinérgicas/patología , Neuronas Colinérgicas/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo
15.
J Neurosci ; 43(5): 722-735, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535767

RESUMEN

The amygdalar anterior basolateral nucleus (BLa) plays a vital role in emotional behaviors. This region receives dense cholinergic projections from basal forebrain which are critical in regulating neuronal activity in BLa. Cholinergic signaling in BLa has also been shown to modulate afferent glutamatergic inputs to this region. However, these studies, which have used cholinergic agonists or prolonged optogenetic stimulation of cholinergic fibers, may not reflect the effect of physiological acetylcholine release in the BLa. To better understand these effects of acetylcholine, we have used electrophysiology and optogenetics in male and female mouse brain slices to examine cholinergic regulation of afferent BLa input from cortex and midline thalamic nuclei. Phasic ACh release evoked by single pulse stimulation of cholinergic terminals had a biphasic effect on transmission at cortical input, producing rapid nicotinic receptor-mediated facilitation followed by slower mAChR-mediated depression. In contrast, at this same input, sustained ACh elevation through application of the cholinesterase inhibitor physostigmine suppressed glutamatergic transmission through mAChRs only. This suppression was not observed at midline thalamic nuclei inputs to BLa. In agreement with this pathway specificity, the mAChR agonist, muscarine more potently suppressed transmission at inputs from prelimbic cortex than thalamus. Muscarinic inhibition at prelimbic cortex input required presynaptic M4 mAChRs, while at thalamic input it depended on M3 mAChR-mediated stimulation of retrograde endocannabinoid signaling. Muscarinic inhibition at both pathways was frequency-dependent, allowing only high-frequency activity to pass. These findings demonstrate complex cholinergic regulation of afferent input to BLa that is pathway-specific and frequency-dependent.SIGNIFICANCE STATEMENT Cholinergic modulation of the basolateral amygdala regulates formation of emotional memories, but the underlying mechanisms are not well understood. Here, we show, using mouse brain slices, that ACh differentially regulates afferent transmission to the BLa from cortex and midline thalamic nuclei. Fast, phasic ACh release from a single optical stimulation biphasically regulates glutamatergic transmission at cortical inputs through nicotinic and muscarinic receptors, suggesting that cholinergic neuromodulation can serve precise, computational roles in the BLa. In contrast, sustained ACh elevation regulates cortical input through muscarinic receptors only. This muscarinic regulation is pathway-specific with cortical input inhibited more strongly than midline thalamic nuclei input. Specific targeting of these cholinergic receptors may thus provide a therapeutic strategy to bias amygdalar processing and regulate emotional memory.


Asunto(s)
Acetilcolina , Complejo Nuclear Basolateral , Ratones , Animales , Masculino , Femenino , Acetilcolina/metabolismo , Complejo Nuclear Basolateral/metabolismo , Receptores Colinérgicos/metabolismo , Tálamo/fisiología , Colinérgicos/farmacología , Receptores Muscarínicos/metabolismo , Transmisión Sináptica/fisiología
16.
J Neurosci ; 43(42): 6988-7005, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37648452

RESUMEN

Alzheimer's disease (AD) is associated with amyloidosis and dysfunction of the cholinergic system, which is crucial for learning and memory. However, the nature of acetylcholine signaling within regions of cholinergic-dependent plasticity and how it changes with experience is poorly understood, much less the impact of amyloidosis on this signaling. Therefore, we optically measure the release profile of acetylcholine to unexpected, predicted, and predictive events in visual cortex (VC)-a site of known cholinergic-dependent plasticity-in a preclinical mouse model of AD that develops amyloidosis. We find that acetylcholine exhibits reinforcement signaling qualities, reporting behaviorally relevant outcomes and displaying release profiles to predictive and predicted events that change as a consequence of experience. We identify three stages of amyloidosis occurring before the degeneration of cholinergic synapses within VC and observe that cholinergic responses in amyloid-bearing mice become impaired over these stages, diverging progressively from age- and sex-matched littermate controls. In particular, amyloidosis degrades the signaling of unexpected rewards and punishments, and attenuates the experience-dependent (1) increase of cholinergic responses to outcome predictive visual cues, and (2) decrease of cholinergic responses to predicted outcomes. Hyperactive spontaneous acetylcholine release occurring transiently at the onset of impaired cholinergic signaling is also observed, further implicating disrupted cholinergic activity as an early functional biomarker in AD. Our findings suggest that acetylcholine acts as a reinforcement signal that is impaired by amyloidosis before pathologic degeneration of the cholinergic system, providing a deeper understanding of the effects of amyloidosis on acetylcholine signaling and informing future interventions for AD.SIGNIFICANCE STATEMENT The cholinergic system is especially vulnerable to the neurotoxic effects of amyloidosis, a hallmark of Alzheimer's disease (AD). Though amyloid-induced cholinergic synaptic loss is thought in part to account for learning and memory impairments in AD, little is known regarding how amyloid impacts signaling of the cholinergic system before its anatomic degeneration. Optical measurement of acetylcholine (ACh) release in a mouse model of AD that develops amyloidosis reveals that ACh signals reinforcement and outcome prediction that is disrupted by amyloidosis before cholinergic degeneration. These observations have important scientific and clinical implications: they implicate ACh signaling as an early functional biomarker, provide a deeper understanding of the action of acetylcholine, and inform on when and how intervention may best ameliorate cognitive decline in AD.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Acetilcolina/metabolismo , Amiloidosis/patología , Amiloide , Colinérgicos/farmacología , Biomarcadores , Péptidos beta-Amiloides/metabolismo
17.
J Neurosci ; 43(49): 8425-8441, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37798131

RESUMEN

Basal forebrain (BF) projections to the hippocampus and cortex are anatomically positioned to influence a broad range of cognitive capacities that are known to decline in normal aging, including executive function and memory. Although a long history of research on neurocognitive aging has focused on the role of the cholinergic basal forebrain system, intermingled GABAergic cells are numerically as prominent and well positioned to regulate the activity of their cortical projection targets, including the hippocampus and prefrontal cortex. The effects of aging on noncholinergic BF neurons in primates, however, are largely unknown. In this study, we conducted quantitative morphometric analyses in brains from young adult (6 females, 2 males) and aged (11 females, 5 males) rhesus monkeys (Macaca mulatta) that displayed significant impairment on standard tests that require the prefrontal cortex and hippocampus. Cholinergic (ChAT+) and GABAergic (GAD67+) neurons were quantified through the full rostrocaudal extent of the BF. Total BF immunopositive neuron number (ChAT+ plus GAD67+) was significantly lower in aged monkeys compared with young, largely because of fewer GAD67+ cells. Additionally, GAD67+ neuron volume was greater selectively in aged monkeys without cognitive impairment compared with young monkeys. These findings indicate that the GABAergic component of the primate BF is disproportionally vulnerable to aging, implying a loss of inhibitory drive to cortical circuitry. Moreover, adaptive reorganization of the GABAergic circuitry may contribute to successful neurocognitive outcomes.SIGNIFICANCE STATEMENT A long history of research has confirmed the role of the basal forebrain in cognitive aging. The majority of that work has focused on BF cholinergic neurons that innervate the cortical mantle. Codistributed BF GABAergic populations are also well positioned to influence cognitive function, yet little is known about this prominent neuronal population in the aged brain. In this unprecedented quantitative comparison of both cholinergic and GABAergic BF neurons in young and aged rhesus macaques, we found that neuron number is significantly reduced in the aged BF compared with young, and that this reduction is disproportionately because of a loss of GABAergic neurons. Together, our findings encourage a new perspective on the functional organization of the primate BF in neurocognitive aging.


Asunto(s)
Prosencéfalo Basal , Envejecimiento Cognitivo , Animales , Masculino , Femenino , Prosencéfalo Basal/fisiología , Macaca mulatta , Neuronas Colinérgicas , Envejecimiento/fisiología , Colinérgicos
18.
J Cell Mol Med ; 28(4): e18118, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332529

RESUMEN

Opioids can be used for medical and non-medical purposes. Chronic pain such as cancer, as well as the frequent use of such drugs in places such as operating rooms and intensive care units, and in non-medical areas like drug abuse the effects and side effects of these drugs need to be examined in more detail. For this purpose, the effects of fentanyl and remifentanil drugs on neuroinflammation, oxidative stress and cholinesterase metabolism were investigated. Neuron cells (CRL-10742) were used for the evaluation of the toxicity of fentanyl and remifentanil. MTT, PON1 activity and total thiol levels for its effect on oxidative stress, AChE and BChE activities for its effect on the cholinergic system, and TNF, IL-8 and IL-10 gene levels for its neuroinflammation effect were determined. The highest neurotoxic dose of fentanyl and remifentanil was determined as 10 µg/mL. It was observed that the rate of neuron cells in this dose has decreased by up to 61.80% and 56.89%, respectively. The IL-8 gene expression level in both opioids was down-regulated while IL 10 gene level was up-regulated in a dose-dependent manner compared to the control. In our results, the TNF gene expression level differs between the two opioids. In the fentanyl group, it was seen to be up-regulated in a dose-dependent manner compared to the control. Fentanyl and remifentanil showed an inhibitory effect against PON1, while remifentanil showed an increase in total thiol levels. PON1, BChE and total thiol activities showed similarity with MTT.


Asunto(s)
Dolor Crónico , Fentanilo , Humanos , Fentanilo/toxicidad , Remifentanilo/farmacología , Piperidinas/toxicidad , Interleucina-8 , Enfermedades Neuroinflamatorias , Analgésicos Opioides/toxicidad , Estrés Oxidativo , Neuronas , Dolor Crónico/inducido químicamente , Compuestos de Sulfhidrilo , Arildialquilfosfatasa
19.
J Physiol ; 602(15): 3693-3713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970617

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.


Asunto(s)
Contracción Muscular , Músculo Liso , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Contracción Muscular/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas , Masculino , Carbacol/farmacología , Capsaicina/farmacología , Calcio/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
20.
J Biol Chem ; 299(9): 105121, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37536628

RESUMEN

Single-cell transcriptomics are powerful tools to define neuronal cell types based on co-expressed gene clusters. Limited RNA input in these technologies necessarily compromises transcriptome coverage and accuracy of differential expression analysis. We propose that bulk RNA-Seq of neuronal pools defined by spatial position offers an alternative strategy to overcome these technical limitations. We report a laser-capture microdissection (LCM)-Seq method which allows deep transcriptome profiling of fluorescently tagged neuron populations isolated with LCM from histological sections of transgenic mice. Mild formaldehyde fixation of ZsGreen marker protein, LCM sampling of ∼300 pooled neurons, followed by RNA isolation, library preparation and RNA-Seq with methods optimized for nanogram amounts of moderately degraded RNA enabled us to detect ∼15,000 different transcripts in fluorescently labeled cholinergic neuron populations. The LCM-Seq approach showed excellent accuracy in quantitative studies, allowing us to detect 2891 transcripts expressed differentially between the spatially defined and clinically relevant cholinergic neuron populations of the dorsal caudate-putamen and medial septum. In summary, the LCM-Seq method we report in this study is a versatile, sensitive, and accurate bulk sequencing approach to study the transcriptome profile and differential gene expression of fluorescently tagged neuronal populations isolated from transgenic mice with high spatial precision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA