Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 101(12): 5163-5171, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33608884

RESUMEN

BACKGROUND: The pericarp of citrus in rutaceae is rich in flavonoids that may possess diverse biological activities. Some citrus flavonoids have been used as natural bitterness inhibitors; however, many citrus flavonoid analogues that possess merit taste amelioration functions have not been reported with respect to utilization in food industry. RESULTS: The effects of 12 citrus flavonoids on the inhibition of the bitter taste of naringin, quinine hydrochloride and stevioside were evaluated both by a sensory panel and electronic tongue analysis. Among the flavonoid compounds evaluated, both neohesperidin dihydrochalcone (NHDC) and neodiosmin were identified to show an excellent bitterness inhibition effect on all three bitterness vehicles tested. The results of the electronic tongue evaluation also showed that the addition of neodiosmin, NHDC or hesperidin dihydrochalcone-7-o-glucoside (HDC-7-G) was able to reduce significantly the bitterness response value of quinine hydrochloride, which is consistent with the sensory panel evaluation. Structure-activity relationship analysis found that the 7-linked neohesperidosyloxy group in the A-ring of the citrus flavonoid skeleton has the best bitterness inhibition effect. In addition, a ternary mixture of NHDC, neodiosmin and naringin, and neodiosmin/ß-cyclodextrin was formulated and it demonstrated, for the first time in the flavor improvement of citrus fruit wine, an enhancement of sweetness and a reduction of bitter taste. CONCLUSION: Twelve citrus flavonoids were found to inhibit the bitter taste of naringin, quinine hydrochloride and stevioside. With respect to the structure-activity relationship analysis, it was found that the 7-linked neohesperidosyloxy group in the A-ring of the citrus flavonoid skeleton possessed the best bitterness inhibition effect. © 2021 Society of Chemical Industry.


Asunto(s)
Citrus/química , Flavonoides/química , Aromatizantes/química , Extractos Vegetales/química , Nariz Electrónica , Flavonoides/aislamiento & purificación , Aromatizantes/aislamiento & purificación , Humanos , Extractos Vegetales/aislamiento & purificación , Gusto , Vino/análisis
2.
Front Nutr ; 10: 1257172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674886

RESUMEN

Introduction: Oxidative stress plays an essential role in the pathogenesis of chronic diseases. Disrupting the Keap1-Nrf2 pathway by binding Keap1 is identified as a potential strategy to prevent oxidative stress-related chronic diseases. Therefore, of special interest is the utilization of dietary antioxidations from citrus, including narirutin, naringenin, hesperetin, hesperidin, naringin, neohesperidin dihydrochalcone, neohesperidin, and nobiletin, has been exploited as a prospective way to treat or prevent several human pathologies as Keap1-Nrf2 inhibitors for modulation of antioxidant properties. Methods: To probe into the structural foundation of the molecular identification of citrus-derived antioxidations, we calculated the antioxidant responsive element activation ability of citrus-derived flavonoids after binding with Keap1. Also, the quantum chemistry properties and binding mode were performed theoretically with frontier molecular orbitals, molecular electrostatic potential analysis, molecular docking, and absorption, distribution, metabolism, excretion (ADME) calculation. Results and discussion: Experimental findings combining computational assays revealed that the tested citrus-derived flavonoids can be grouped into strong agonists and weak agonists. The citrus-derived antioxidations were well housed in the bound zone of Keap1 via stable hydrogen bonding and hydrophobic interaction. Eventually, three of eight antioxidations were identified after ADME and physicochemical evaluations. The citrus-derived flavonoids were identified as potential dietary antioxidants of the Keap1-Nrf2 interaction, and can be used to improve oxidative stress-related chronic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA