Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568969

RESUMEN

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , ADN/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , ARN/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(12): e2216887120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920921

RESUMEN

In the developmental remodeling of brain circuits, neurons are removed by glial phagocytosis to optimize adult behavior. Fragile X mental retardation protein (FMRP) regulates neuron-to-glia signaling to drive glial phagocytosis for targeted neuron pruning. We find that FMRP acts in a mothers against decapentaplegic (Mad)-insulin receptor (InR)-protein kinase B (Akt) pathway to regulate pretaporter (Prtp) and amyloid precursor protein-like (APPL) signals directing this glial clearance. Neuronal RNAi of Drosophila fragile X mental retardation 1 (dfmr1) elevates mad transcript levels and increases pMad signaling. Neuronal dfmr1 and mad RNAi both elevate phospho-protein kinase B (pAkt) and delay neuron removal but cause opposite effects on InR expression. Genetically correcting pAkt levels in the mad RNAi background restores normal remodeling. Consistently, neuronal dfmr1 and mad RNAi both decrease Prtp levels, whereas neuronal InR and akt RNAi increase Prtp levels, indicating FMRP works with pMad and insulin signaling to tightly regulate Prtp signaling and thus control glial phagocytosis for correct circuit remodeling. Neuronal dfmr1 and mad and akt RNAi all decrease APPL levels, with the pathway signaling higher glial endolysosome activity for phagocytosis. These findings reveal a FMRP-dependent control pathway for neuron-to-glia communication in neuronal pruning, identifying potential molecular mechanisms for devising fragile X syndrome treatments.


Asunto(s)
Proteínas de Drosophila , Síndrome del Cromosoma X Frágil , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(29): e2303779120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428902

RESUMEN

Circadian behavioral rhythms in Drosophila melanogaster are regulated by about 75 pairs of brain neurons. They all express the core clock genes but have distinct functions and gene expression profiles. To understand the importance of these distinct molecular programs, neuron-specific gene manipulations are essential. Although RNAi based methods are standard to manipulate gene expression in a cell-specific manner, they are often ineffective, especially in assays involving smaller numbers of neurons or weaker Gal4 drivers. We and others recently exploited a neuron-specific CRISPR-based method to mutagenize genes within circadian neurons. Here, we further explore this approach to mutagenize three well-studied clock genes: the transcription factor gene vrille, the photoreceptor gene Cryptochrome (cry), and the neuropeptide gene Pdf (pigment dispersing factor). The CRISPR-based strategy not only reproduced their known phenotypes but also assigned cry function for different light-mediated phenotypes to discrete, different subsets of clock neurons. We further tested two recently published methods for temporal regulation in adult neurons, inducible Cas9 and the auxin-inducible gene expression system. The results were not identical, but both approaches successfully showed that the adult-specific knockout of the neuropeptide Pdf reproduces the canonical loss-of-function mutant phenotypes. In summary, a CRISPR-based strategy is a highly effective, reliable, and general method to temporally manipulate gene function in specific adult neurons.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Neuronas/metabolismo , Relojes Circadianos/genética
4.
Proc Natl Acad Sci U S A ; 119(34): e2206066119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969763

RESUMEN

The metronome-like circadian regulation of sleep timing must still adapt to an uncertain environment. Recent studies in Drosophila indicate that neuromodulation not only plays a key role in clock neuron synchronization but also affects interactions between the clock network and brain sleep centers. We show here that the targets of neuromodulators, G Protein Coupled Receptors (GPCRs), are highly enriched in the fly brain circadian clock network. Single-cell sequencing indicates that they are not only enriched but also differentially expressed and contribute to clock neuron identity. We generated a comprehensive guide library to mutagenize individual GPCRs in specific neurons and verified the strategy by introducing a targeted sequencing approach. Combined with a behavioral screen, the mutagenesis strategy revealed a role of dopamine in sleep regulation by identifying two dopamine receptors and a clock neuron subpopulation that gate the timing of sleep.


Asunto(s)
Ritmo Circadiano , Dopamina , Proteínas de Drosophila , Neuronas , Receptores Acoplados a Proteínas G , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Dopamina/genética , Dopamina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sueño/genética
5.
Biochem Biophys Res Commun ; 682: 77-84, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37804590

RESUMEN

A LIM homeodomain transcription factor Apterous (Ap) regulates embryonic and larval neurodevelopment in Drosophila. Although Ap is still expressed in the adult brain, it remains elusive whether Ap is involved in neurodevelopmental events in the adult brain because flies homozygous for ap mutations are usually lethal before they reach the adult stage. In this study, using adult escapers of ap knockout (KO) homozygotes, we examined whether the complete lack of ap expression affects the morphology of the mushroom body (MB) neurons and Pigment-dispersing factor (Pdf)-positive clock neurons in the adult brain. Although ap KO escapers showed severe structural defects of MB neurons, no clear morphological defects were found in Pdf-positive clock neurons. These results suggest that Ap in the adult brain is essential for the neurodevelopment of specific ap-positive neurons, but it is not necessarily involved in the development of all ap-positive neurons.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Cuerpos Pedunculados/metabolismo
6.
Genes Cells ; 27(4): 266-279, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35094465

RESUMEN

A newly formed memory is initially unstable. However, if it is consolidated into the brain, the consolidated memory is stored as stable long-term memory (LTM). Despite the recent progress, the molecular and cellular mechanisms of LTM have not yet been fully elucidated. The fruitfly Drosophila melanogaster, for which various genetic tools are available, has been used to clarify the molecular mechanisms of LTM. Using the Drosophila courtship-conditioning assay as a memory paradigm, we previously identified that the circadian clock gene period (per) plays a vital role in consolidating LTM, suggesting that per-expressing clock neurons are critically involved in LTM. However, it is still incompletely understood which clock neurons are essential for LTM. Here, we show that dorsal-lateral clock neurons (LNds) play a crucial role in LTM. Using an LNd-specific split-GAL4 line, we confirmed that disruption of synaptic transmission in LNds impaired LTM maintenance. On the other hand, induction of per RNAi or the dominant-negative transgene of Per in LNds impaired LTM consolidation. Our results reveal that transmitter release and Per function in LNds are involved in courtship memory processing.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Memoria a Largo Plazo/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología
7.
J Neurosci ; 40(7): 1427-1439, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31932417

RESUMEN

Long-term memory (LTM) is stored as functional modifications of relevant neural circuits in the brain. A large body of evidence indicates that the initial establishment of such modifications through the process known as memory consolidation requires learning-dependent transcriptional activation and de novo protein synthesis. However, it remains poorly understood how the consolidated memory is maintained for a long period in the brain, despite constant turnover of molecular substrates. Using the Drosophila courtship conditioning assay of adult males as a memory paradigm, here, we show that in Drosophila, environmental light plays a critical role in LTM maintenance. LTM is impaired when flies are kept in constant darkness (DD) during the memory maintenance phase. Because light activates the brain neurons expressing the neuropeptide pigment-dispersing factor (Pdf), we examined the possible involvement of Pdf neurons in LTM maintenance. Temporal activation of Pdf neurons compensated for the DD-dependent LTM impairment, whereas temporal knockdown of Pdf during the memory maintenance phase impaired LTM in light/dark cycles. Furthermore, we demonstrated that the transcription factor cAMP response element-binding protein (CREB) is required in the memory center, namely, the mushroom bodies (MBs), for LTM maintenance, and Pdf signaling regulates light-dependent transcription via CREB. Our results demonstrate for the first time that universally available environmental light plays a critical role in LTM maintenance by activating the evolutionarily conserved memory modulator CREB in MBs via the Pdf signaling pathway.SIGNIFICANCE STATEMENT Temporary memory can be consolidated into long-term memory (LTM) through de novo protein synthesis and functional modifications of neuronal circuits in the brain. Once established, LTM requires continual maintenance so that it is kept for an extended period against molecular turnover and cellular reorganization that may disrupt memory traces. How is LTM maintained mechanistically? Despite the critical importance of LTM maintenance, its molecular and cellular underpinnings remain elusive. This study using Drosophila is significant because it revealed for the first time in any organism that universally available environmental light plays an essential role in LTM maintenance. Interestingly, light does so by activating the evolutionarily conserved transcription factor cAMP response element-binding protein via peptidergic signaling.


Asunto(s)
Drosophila melanogaster/efectos de la radiación , Luz , Consolidación de la Memoria/efectos de la radiación , Memoria a Largo Plazo/efectos de la radiación , Animales , Ritmo Circadiano , Condicionamiento Clásico , Cortejo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Oscuridad , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Genes Reporteros , Masculino , Consolidación de la Memoria/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/efectos de la radiación , Neuronas/fisiología , Neuronas/efectos de la radiación , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Neuropéptidos/fisiología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Acoplados a Proteínas G/fisiología , Privación de Sueño , Transcripción Genética/fisiología
8.
J Neurosci ; 40(50): 9617-9633, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33172977

RESUMEN

Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolished the depolarization of l-LNvs in response to dopamine. This indicates that dopamine signals via Dop1R1 to the l-LNvs. Downregulation of Dop1R1 or Dop1R2 in the l-LNvs and s-LNvs does not affect sleep in males. Unexpectedly, we find a moderate decrease of daytime sleep with downregulation of Dop1R1 and of nighttime sleep with downregulation of Dop1R2. Since the l-LNvs do not use Dop1R2 receptors and the s-LNvs also respond to dopamine, we conclude that the s-LNvs are responsible for the observed decrease in nighttime sleep. In summary, dopamine signaling in the wake-promoting LNvs is not required for daytime arousal, but likely promotes nighttime sleep via the s-LNvs.SIGNIFICANCE STATEMENT In insect and mammalian brains, sleep-promoting networks are intimately linked to the circadian clock, and the mechanisms underlying sleep and circadian timekeeping are evolutionarily ancient and highly conserved. Here we show that dopamine, one important sleep modulator in flies and mammals, plays surprisingly complex roles in the regulation of sleep by clock-containing neurons. Dopamine inhibits neurons in a central brain sleep center to promote sleep and excites wake-promoting circadian clock neurons. It is therefore predicted to promote wakefulness through both of these networks. Nevertheless, our results reveal that dopamine acting on wake-promoting clock neurons promotes sleep, revealing a previously unappreciated complexity in the dopaminergic control of sleep.


Asunto(s)
Ritmo Circadiano/fisiología , Dopamina/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Sueño/fisiología , Potenciales de Acción/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Masculino , Técnicas de Placa-Clamp , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/metabolismo
9.
J Physiol ; 597(23): 5707-5722, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31612994

RESUMEN

As in mammals, Drosophila circadian clock neurons display rhythms of activity with higher action potential firing rates and more positive resting membrane potentials during the day. This rhythmic excitability has been widely observed but, critically, its regulation remains unresolved. We have characterized and modelled the changes underlying these electrical activity rhythms in the lateral ventral clock neurons (LNvs). We show that currents mediated by the voltage-gated potassium channels Shaw (Kv3) and Shal (Kv4) oscillate in a circadian manner. Disruption of these channels, by expression of dominant negative (DN) subunits, leads to changes in circadian locomotor activity and shortens lifespan. LNv whole-cell recordings then show that changes in Shaw and Shal currents drive changes in action potential firing rate and that these rhythms are abolished when the circadian molecular clock is stopped. A whole-cell biophysical model using Hodgkin-Huxley equations can recapitulate these changes in electrical activity. Based on this model and by using dynamic clamp to manipulate clock neurons directly, we can rescue the pharmacological block of Shaw and Shal, restore the firing rhythm, and thus demonstrate the critical importance of Shaw and Shal. Together, these findings point to a key role for Shaw and Shal in controlling circadian firing of clock neurons and show that changes in clock neuron currents can account for this. Moreover, with dynamic clamp we can switch the LNvs between morning-like and evening-like states of electrical activity. We conclude that changes in Shaw and Shal underlie the daily oscillation in LNv firing rate.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/fisiología , Neuronas/fisiología , Canales de Potasio Shal/fisiología , Canales de Potasio Shaw/fisiología , Animales , Ritmo Circadiano , Drosophila , Femenino , Locomoción , Masculino , Modelos Biológicos
10.
Neurobiol Dis ; 130: 104507, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31207389

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, which is associated with an enormous personal, social and economic burden worldwide. However, there are few current treatments with none of them targeting the underlying causes of the disease. Sleep and circadian rhythm defects are not only distressing symptoms of AD and other tauopathies and are a leading cause of care home admission but are also thought to accelerate AD pathology. Despite this, little is understood about the underlying causes of these behavioural changes. Expression of the 0N4R isoform of tau has been associated with AD pathology and we show that expressing it in the Drosophila clock network gives rise to circadian and sleep phenotypes which closely match the behavioural changes seen in human AD patients. Tauopathic flies exhibited greater locomotor activity throughout the day and night and displayed a loss of sleep, particularly at night. Under constant darkness, the locomotor behaviour of tau-expressing flies was less rhythmic than controls indicating a defect in their intrinsic circadian rhythm. Current clamp recordings from wake-promoting, pigment dispersing factor (PDF)-positive large lateral ventral clock neurons (l-LNvs) revealed elevated spontaneous firing throughout the day and night which likely underlies the observed hyperactive circadian phenotype. Interestingly, expression of tau in only the PDF-positive pacemaker neurons, which are thought to be the most important for behaviour under constant conditions, was not sufficient or even necessary to affect circadian rhythmicity. This work establishes Drosophila as a model to investigate interactions between human pathological versions of tau and the machinery that controls neuronal excitability, allowing the identification of underlying mechanisms of disease that may reveal new therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Neuronas/fisiología , Sueño/fisiología , Tauopatías/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Relojes Biológicos , Proteínas de Drosophila/genética , Drosophila melanogaster , Masculino , Actividad Motora/fisiología , Técnicas de Placa-Clamp , Tauopatías/genética , Proteínas tau/genética
11.
BMC Neurosci ; 20(1): 24, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138137

RESUMEN

BACKGROUND: Mutants which carry mutations in genes encoding mitochondrial ligases MUL1 and PARKIN are convenient Drosophila models of Parkinson's disease (PD). In several studies it has been shown that in Parkinson's disease sleep disturbance occurs, which may be the result of a disturbed circadian clock. RESULTS: We found that the ROS level was higher, while the anti-oxidant enzyme SOD1 level was lower in mul1A6 and park1 mutants than in the white mutant used as a control. Moreover, mutations of both ligases affected circadian rhythms and the clock. The expression of clock genes per, tim and clock and the level of PER protein were changed in the mutants. Moreover, expression of ATG5, an autophagy protein also involved in circadian rhythm regulation, was decreased in the brain and in PDF-immunoreactive large ventral lateral clock neurons. The observed changes in the molecular clock resulted in a longer period of locomotor activity rhythm, increased total activity and shorter sleep at night. Finally, the lack of both ligases led to decreased longevity and climbing ability of the flies. CONCLUSIONS: All of the changes observed in the brains of these Drosophila models of PD, in which mitochondrial ligases MUL1 and PARKIN do not function, may explain the mechanisms of some neurological and behavioural symptoms of PD.


Asunto(s)
Encéfalo/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Proteínas de Drosophila/fisiología , Locomoción/fisiología , Enfermedad de Parkinson/fisiopatología , Sueño/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Proteínas CLOCK/biosíntesis , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidad/fisiología , Destreza Motora/fisiología , Mutación , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Ubiquitina-Proteína Ligasas/genética
12.
J Neurosci ; 35(15): 6131-41, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25878285

RESUMEN

Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry(0)) mutant background. We were able to rescue the light entrainment deficits of cry(0) mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry(0) mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment.


Asunto(s)
Ritmo Circadiano/fisiología , Criptocromos/metabolismo , Regulación de la Expresión Génica/fisiología , Vías Visuales/fisiología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Criptocromos/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ojo/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luz , Masculino , Ratones Transgénicos , Actividad Motora/genética , Mutación/genética , Estimulación Física , ARN Mensajero
13.
Biochim Biophys Acta ; 1849(2): 217-23, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24953188

RESUMEN

The unfulfilled gene of Drosophila encodes a member of the NR2E subfamily of nuclear receptors. Like related members of the NR2E subfamily, UNFULFILLED is anticipated to function as a dimer, binding to DNA response elements and regulating the expression of target genes. The UNFULFILLED protein may be regulated by ligand-binding and may also be post-transcriptionally modified by sumoylation and phosphorylation. unfulfilled mutants display a range of aberrant phenotypes, problems with eclosion and post-eclosion behaviors, compromised fertility, arrhythmicity, and a lack of all adult mushroom body lobes. The locus of the fertility problem has not been determined. The behavioral arrhythmicity is due to the unfulfilled-dependent disruption of gene expression in a set of pacemaker neurons. The eclosion and the mushroom body lobe phenotypes of unfulfilled mutants are the result of developmental problems associated with failures in axon pathfinding or re-extension. Interest in genes that act downstream of unfulfilled has resulted in the identification of a growing number of unfulfilled interacting loci, providing the first glimpse into the composition of unfulfilled-dependent gene networks. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Sistema Nervioso/embriología , Receptores Citoplasmáticos y Nucleares/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Datos de Secuencia Molecular , Cuerpos Pedunculados/embriología , Neurogénesis/genética , Fenotipo , Receptores Citoplasmáticos y Nucleares/genética
14.
Methods ; 68(1): 140-50, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24412370

RESUMEN

Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research.


Asunto(s)
Bioensayo/métodos , Ritmo Circadiano/genética , Drosophila melanogaster/crecimiento & desarrollo , Animales , Conducta Animal/fisiología , Encéfalo/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/genética , Neuronas/metabolismo , Temperatura
15.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38106047

RESUMEN

Drosophila sLNv clock neurons release the neuropeptide PDF to control circadian rhythms. Strikingly, PDF content in sLNv terminals is rhythmic with a peak in the morning hours prior to the onset of activity-dependent release. Because synaptic PDF accumulation, rather than synaptic release, aligns with the late-night elevations in both sLNv neuron excitability and Ca2+, we explored the dependence of presynaptic neuropeptide accumulation on neuropeptide vesicle transport, electrical activity and the circadian clock. Live imaging reveals that anterograde axonal transport is constant throughout the day and capture of circulating neuropeptide vesicles rhythmically boosts presynaptic neuropeptide content hours prior to release. The late-night surge in vesicle capture, like release, requires electrical activity and results in a large releasable pool of presynaptic vesicles to support the later burst of neuropeptide release. The circadian clock is also required suggesting that it controls the switch from vesicle capture to exocytosis, which are normally coupled activity-dependent processes. This toggling of activity transduction maximizes rhythmic synaptic neuropeptide release needed for robust circadian behavior and resolves the previously puzzling delay in timing of synaptic neuropeptide release relative to changes in sLNv clock neuron physiology.

16.
J Exp Biol ; 216(Pt 20): 3837-43, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24068350

RESUMEN

GABAergic signalling is important for normal sleep in humans and flies. Here we advance the current understanding of GABAergic modulation of daily sleep patterns by focusing on the role of slow metabotropic GABAB receptors in the fruit fly Drosophila melanogaster. We asked whether GABAB-R2 receptors are regulatory elements in sleep regulation in addition to the already identified fast ionotropic Rdl GABAA receptors. By immunocytochemical and reporter-based techniques we show that the pigment dispersing factor (PDF)-positive ventrolateral clock neurons (LNv) express GABAB-R2 receptors. Downregulation of GABAB-R2 receptors in the large PDF neurons (l-LNv) by RNAi reduced sleep maintenance in the second half of the night, whereas sleep latency at the beginning of the night that was previously shown to depend on ionotropic Rdl GABAA receptors remained unaltered. Our results confirm the role of the l-LNv neurons as an important part of the sleep circuit in D. melanogaster and also identify the GABAB-R2 receptors as the thus far missing component in GABA-signalling that is essential for sleep maintenance. Despite the significant effects on sleep, we did not observe any changes in circadian behaviour in flies with downregulated GABAB-R2 receptors, indicating that the regulation of sleep maintenance via l-LNv neurons is independent of their function in the circadian clock circuit.


Asunto(s)
Oscuridad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de GABA-B/metabolismo , Sueño/fisiología , Animales , Regulación hacia Abajo , Drosophila melanogaster/citología , Locomoción/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/metabolismo
17.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645872

RESUMEN

Chromatin organization plays a crucial role in gene regulation by controlling the accessibility of DNA to transcription machinery. While significant progress has been made in understanding the regulatory role of clock proteins in circadian rhythms, how chromatin organization affects circadian rhythms remains poorly understood. Here, we employed ATAC-seq (Assay for Transposase-Accessible Chromatin with Sequencing) on FAC-sorted Drosophila clock neurons to assess genome-wide chromatin accessibility over the circadian cycle. We observed significant circadian oscillations in chromatin accessibility at promoter and enhancer regions of hundreds of genes, with enhanced accessibility either at dusk or dawn, which correlated with their peak transcriptional activity. Notably, genes with enhanced accessibility at dusk were enriched with E-box motifs, while those more accessible at dawn were enriched with VRI/PDP1-box motifs, indicating that they are regulated by the core circadian feedback loops, PER/CLK and VRI/PDP1, respectively. Further, we observed a complete loss of chromatin accessibility rhythms in per01 null mutants, with chromatin consistently accessible throughout the circadian cycle, underscoring the critical role of Period protein in driving chromatin compaction during the repression phase. Together, this study demonstrates the significant role of chromatin organization in circadian regulation, revealing how the interplay between clock proteins and chromatin structure orchestrates the precise timing of biological processes throughout the day. This work further implies that variations in chromatin accessibility might play a central role in the generation of diverse circadian gene expression patterns in clock neurons.

18.
Open Biol ; 13(6): 230090, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37369351

RESUMEN

The neuropeptide pigment-dispersing factor (PDF) plays a pivotal role in the circadian clock of most Ecdysozoa and is additionally involved in the timing of seasonal responses of several photoperiodic species. The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species with an annual life cycle tightly coupled to the seasonal changes in day length. Nevertheless, PDF could not be identified in A. pisum so far. In the present study, we identified a PDF-coding gene that has undergone significant changes in the otherwise highly conserved insect C-terminal amino acid sequence. A newly generated aphid-specific PDF antibody stained four neurons in each hemisphere of the aphid brain that co-express the clock protein Period and have projections to the pars lateralis that are highly plastic and change their appearance in a daily and seasonal manner, resembling those of the fruit fly PDF neurons. Most intriguingly, the PDF terminals overlap with dendrites of the insulin-like peptide (ILP) positive neurosecretory cells in the pars intercerebralis and with putative terminals of Cryptochrome (CRY) positive clock neurons. Since ILP has been previously shown to be crucial for seasonal adaptations and CRY might serve as a circadian photoreceptor vital for measuring day length, our results suggest that PDF plays a critical role in aphid seasonal timing.


Asunto(s)
Áfidos , Relojes Circadianos , Insulinas , Animales , Áfidos/genética , Áfidos/metabolismo , Ritmo Circadiano/genética , Drosophila/fisiología , Fibrinógeno/metabolismo , Insulinas/metabolismo , Neuronas/metabolismo , Pisum sativum/metabolismo , Péptidos/metabolismo
19.
Neuron ; 111(14): 2201-2217.e4, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37172583

RESUMEN

The suprachiasmatic nucleus (SCN) can generate robust circadian behaviors in mammals under different environments, but the underlying neural mechanisms remained unclear. Here, we showed that the activities of cholecystokinin (CCK) neurons in the mouse SCN preceded the onset of behavioral activities under different photoperiods. CCK-neuron-deficient mice displayed shortened free-running periods, failed to compress their activities under a long photoperiod, and developed rapid splitting or became arrhythmic under constant light. Furthermore, unlike vasoactive intestinal polypeptide (VIP) neurons, CCK neurons are not directly light sensitive, but their activation can elicit phase advance and counter light-induced phase delay mediated by VIP neurons. Under long photoperiods, the impact of CCK neurons on SCN dominates over that of VIP neurons. Finally, we found that the slow-responding CCK neurons control the rate of recovery during jet lag. Together, our results demonstrated that SCN CCK neurons are crucial for the robustness and plasticity of the mammalian circadian clock.


Asunto(s)
Colecistoquinina , Relojes Circadianos , Animales , Ratones , Ritmo Circadiano/fisiología , Mamíferos/metabolismo , Neuronas/fisiología , Fotoperiodo , Núcleo Supraquiasmático/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
J Comp Neurol ; 530(9): 1507-1529, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34961936

RESUMEN

Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Neuronas/metabolismo , Neuropéptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA