Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38855914

RESUMEN

Cluster analysis, a pivotal step in single-cell sequencing data analysis, presents substantial opportunities to effectively unveil the molecular mechanisms underlying cellular heterogeneity and intercellular phenotypic variations. However, the inherent imperfections arise as different clustering algorithms yield diverse estimates of cluster numbers and cluster assignments. This study introduces Single Cell Consistent Clustering based on Spectral Matrix Decomposition (SCSMD), a comprehensive clustering approach that integrates the strengths of multiple methods to determine the optimal clustering scheme. Testing the performance of SCSMD across different distances and employing the bespoke evaluation metric, the methodological selection undergoes validation to ensure the optimal efficacy of the SCSMD. A consistent clustering test is conducted on 15 authentic scRNA-seq datasets. The application of SCSMD to human embryonic stem cell scRNA-seq data successfully identifies known cell types and delineates their developmental trajectories. Similarly, when applied to glioblastoma cells, SCSMD accurately detects pre-existing cell types and provides finer sub-division within one of the original clusters. The results affirm the robust performance of our SCSMD method in terms of both the number of clusters and cluster assignments. Moreover, we have broadened the application scope of SCSMD to encompass larger datasets, thereby furnishing additional evidence of its superiority. The findings suggest that SCSMD is poised for application to additional scRNA-seq datasets and for further downstream analyses.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Análisis por Conglomerados , Biología Computacional/métodos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo
2.
J Magn Reson Imaging ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708951

RESUMEN

BACKGROUND: Irregular cardiac motion can render conventional segmented cine MRI nondiagnostic. Clustering has been proposed for cardiac motion binning and may be optimized for complex arrhythmias. PURPOSE: To develop an adaptive cluster optimization method for irregular cardiac motion, and to generate the corresponding time-resolved cine images. STUDY TYPE: Prospective. SUBJECTS: Thirteen with atrial fibrillation, four with premature ventricular contractions, and one patient in sinus rhythm. FIELD STRENGTH/SEQUENCE: Free-running balanced steady state free precession (bSSFP) with sorted golden-step, reference real-time sequence. ASSESSMENT: Each subject underwent both the sorted golden-step bSSFP and the reference Cartesian real-time imaging. Golden-step bSSFP images were reconstructed using the dynamic regularized adaptive cluster optimization (DRACO) method and k-means clustering. Image quality (4-point Likert scale), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge sharpness, and ventricular function were assessed. STATISTICAL TESTS: Paired t-tests, Friedman test, regression analysis, Fleiss' Kappa, Bland-Altman analysis. Significance level P < 0.05. RESULTS: The DRACO method had the highest percent of images with scores ≥3 (96% for diastolic frame, 93% for systolic frame, and 93% for multiphase cine) and the percentages were significantly higher compared with both the k-means and real-time methods. Image quality scores, SNR, and CNR were significantly different between DRACO vs. k-means and between DRACO vs. real-time. Cardiac function analysis showed no significant differences between DRACO vs. the reference real-time. CONCLUSION: DRACO with time-resolved reconstruction generated high quality images and has early promise for quantitative cine cardiac MRI in patients with complex arrhythmias including atrial fibrillation. TECHNICAL EFFICACY: Stage 2.

3.
Sensors (Basel) ; 24(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38676229

RESUMEN

Positioning based on Global Navigation Satellite Systems (GNSSs) in urban environments always suffers from multipath and Non-Line-of-Sight (NLoS) effects. In such conditions, the GNSS pseudorange measurements can be affected by biases disrupting the GNSS-based applications. Many efforts have been devoted to detecting and mitigating the effects of multipath/NLoS, but the identification and classification of such events are still challenging. This research proposes a method for the post-processing estimation of pseudorange biases resulting from multipath/NLoS effects. Providing estimated pseudorange biases due to multipath/NLoS effects serves two main purposes. Firstly, machine learning-based techniques can leverage accurately estimated pseudorange biases as training data to detect and mitigate multipath/NLoS effects. Secondly, these accurately estimated pseudorange biases can serve as a benchmark for evaluating the effectiveness of the methods proposed to detect multipath/NLoS effects. The estimation is achieved by extracting the multipath/NLoS biases from pseudoranges using a clustering algorithm named Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The performance is demonstrated using two real-world data collections in multipath/NLoS scenarios for both static and dynamic conditions. Since there is no ground truth for the pseudorange biases due to the multipath/NLoS scenarios, the proposed method is validated based on the positioning performance. Positioning solutions are computed by subtracting the estimated biases from the raw pseudoranges and comparing them to the ground truth.

4.
Sensors (Basel) ; 24(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38894336

RESUMEN

The paranasal sinuses, a bilaterally symmetrical system of eight air-filled cavities, represent one of the most complex parts of the equine body. This study aimed to extract morphometric measures from computed tomography (CT) images of the equine head and to implement a clustering analysis for the computer-aided identification of age-related variations. Heads of 18 cadaver horses, aged 2-25 years, were CT-imaged and segmented to extract their volume, surface area, and relative density from the frontal sinus (FS), dorsal conchal sinus (DCS), ventral conchal sinus (VCS), rostral maxillary sinus (RMS), caudal maxillary sinus (CMS), sphenoid sinus (SS), palatine sinus (PS), and middle conchal sinus (MCS). Data were grouped into young, middle-aged, and old horse groups and clustered using the K-means clustering algorithm. Morphometric measurements varied according to the sinus position and age of the horses but not the body side. The volume and surface area of the VCS, RMS, and CMS increased with the age of the horses. With accuracy values of 0.72 for RMS, 0.67 for CMS, and 0.31 for VCS, the possibility of the age-related clustering of CT-based 3D images of equine paranasal sinuses was confirmed for RMS and CMS but disproved for VCS.


Asunto(s)
Imagenología Tridimensional , Senos Paranasales , Caballos , Animales , Análisis por Conglomerados , Senos Paranasales/diagnóstico por imagen , Imagenología Tridimensional/métodos , Tomografía Computarizada Multidetector/métodos , Algoritmos
5.
Prostate ; 83(16): 1591-1601, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37759151

RESUMEN

BACKGROUND: The loss of mechanical homeostasis between tumor cells and microenvironment is an important factor in tumor metastasis. In the process, mechanical forces affect cell proliferation, differentiation, migration and tissue development. AIMS: Using high spatial resolution of Atomic force microscopy (AFM) technology, our study provides the direct measurement of the nanomechanical properties of prostate cancer clinical tissue specimens. MATERIALS AND METHODS: AFM was used to determine the biomechanical properties of prostate tissue with different grade scores. K-means clustering method and fuzzy C-means were used to distinguish the cellular component in prostate tissue from non-cellular component based on their viscoelasticity. Futhermore, AFM measurements in vitro cells, including metastatic prostate cells (PC-3) and normal human prostate cells (PZ-HPV-7) were carried out. RESULTS: The Young's modulus was decreased in prostate cancer progression, and the elasticity of cellular component in prostate cancer tissue was smaller than that of normal prostate tissue. PC-3 cells were softer than PZ-HPV-7 cells. Further mechanism investigation showed that the difference in modulus between cancerous and normal prostate tissue may be associated with a greater actin cytoskeleton distribution inside the cancer cells. CONCLUSION: The results suggests that the nanomechanical properties can classify the prostate tumor, which could be used as an index for the identification and classification of cancer at cellular level.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias de la Próstata , Masculino , Humanos , Microscopía de Fuerza Atómica/métodos , Elasticidad , Módulo de Elasticidad , Microambiente Tumoral
6.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34160582

RESUMEN

Elucidation of cell subpopulations at high resolution is a key and challenging goal of single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) data analysis. Although unsupervised clustering methods have been proposed for de novo identification of cell populations, their performance and robustness suffer from the high variability, low capture efficiency and high dropout rates which are characteristic of scRNA-seq experiments. Here, we present a novel unsupervised method for Single-cell Clustering by Enhancing Network Affinity (SCENA), which mainly employed three strategies: selecting multiple gene sets, enhancing local affinity among cells and clustering of consensus matrices. Large-scale validations on 13 real scRNA-seq datasets show that SCENA has high accuracy in detecting cell populations and is robust against dropout noise. When we applied SCENA to large-scale scRNA-seq data of mouse brain cells, known cell types were successfully detected, and novel cell types of interneurons were identified with differential expression of gamma-aminobutyric acid receptor subunits and transporters. SCENA is equipped with CPU + GPU (Central Processing Units + Graphics Processing Units) heterogeneous parallel computing to achieve high running speed. The high performance and running speed of SCENA combine into a new and efficient platform for biological discoveries in clustering analysis of large and diverse scRNA-seq datasets.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Biología Computacional/métodos , RNA-Seq , Análisis de la Célula Individual/métodos , Bases de Datos Genéticas , Reproducibilidad de los Resultados , Navegador Web
7.
Environ Res ; 217: 114877, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423670

RESUMEN

In the northern plains of Laizhou City, groundwater quality suffers dual threats from anthropogenic activities: seawater intrusion caused by overextraction of fresh groundwater, and vertical infiltration of agricultural pollutants. Groundwater management requires a comprehensive analysis of both horizontal and vertical pollution in coastal aquifers. In this paper, Intrinsic Aquifer Vulnerability (IAV) was assessed on an integrated scale using two classic IAV models (DRASTIC and GALDIT) separately based on a GIS database. Hydrogeological parameters from two classic IAV models were clustered using affinity propagation (AP) clustering algorithm, and silhouette coefficients were used to determine the optimal classification result. In our application, the objects of the AP algorithm are 3320 units divided from the whole study area with 500 m*500 m precision. A comparison of all four outputs in AP-DRASTIC shows that the clustering results of the 4-classification yielded the best silhouette coefficient of 0.406 out of all four. Cluster 4, which comprises 21% of the area, had relatively low level of groundwater contamination, despite its high level of vulnerability as indicated by the classic DRASTIC index. In the second level of vulnerability Cluster 3, 53.8% of all water samples were found to be contaminated, indicating a greater level of nitrate contamination. With respect to AP-GALDIT, the silhouette coefficient for result 7-classification reaches the highest value of 0.343. There was a high level of vulnerability identified in Clusters 2, 4 and 5 (34.7% of the study area) relating to the classic GALDIT index. The concentration of chloride in all water samples obtained in these areas was extremely high. Groundwater management should be addressed by AP-DRASTIC results on anthropogenic activity/contamination control, and by AP-GALDIT results on groundwater extraction limitation. Overall, this method allows for the evaluation of IAV in other coastal areas on an integrated scale, facilitating the development of groundwater management strategies based on a better understanding of the aquifer's essential characteristics.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis , Contaminación del Agua/análisis , Algoritmos , Análisis por Conglomerados , Agua
8.
Sensors (Basel) ; 23(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36904765

RESUMEN

Reflective phenomena often occur in the detecting process of pointer meters by inspection robots in complex environments, which can cause the failure of pointer meter readings. In this paper, an improved k-means clustering method for adaptive detection of pointer meter reflective areas and a robot pose control strategy to remove reflective areas are proposed based on deep learning. It mainly includes three steps: (1) YOLOv5s (You Only Look Once v5-small) deep learning network is used for real-time detection of pointer meters. The detected reflective pointer meters are preprocessed by using a perspective transformation. Then, the detection results and deep learning algorithm are combined with the perspective transformation. (2) Based on YUV (luminance-bandwidth-chrominance) color spatial information of collected pointer meter images, the fitting curve of the brightness component histogram and its peak and valley information is obtained. Then, the k-means algorithm is improved based on this information to adaptively determine its optimal clustering number and its initial clustering center. In addition, the reflection detection of pointer meter images is carried out based on the improved k-means clustering algorithm. (3) The robot pose control strategy, including its moving direction and distance, can be determined to eliminate the reflective areas. Finally, an inspection robot detection platform is built for experimental study on the performance of the proposed detection method. Experimental results show that the proposed method not only has good detection accuracy that achieves 0.809 but also has the shortest detection time, which is only 0.6392 s compared with other methods available in the literature. The main contribution of this paper is to provide a theoretical and technical reference to avoid circumferential reflection for inspection robots. It can adaptively and accurately detect reflective areas of pointer meters and can quickly remove them by controlling the movement of inspection robots. The proposed detection method has the potential application to realize real-time reflection detection and recognition of pointer meters for inspection robots in complex environments.

9.
Sensors (Basel) ; 23(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005418

RESUMEN

Single-circle detection is vital in industrial automation, intelligent navigation, and structural health monitoring. In these fields, the circle is usually present in images with complex textures, multiple contours, and mass noise. However, commonly used circle-detection methods, including random sample consensus, random Hough transform, and the least squares method, lead to low detection accuracy, low efficiency, and poor stability in circle detection. To improve the accuracy, efficiency, and stability of circle detection, this paper proposes a single-circle detection algorithm by combining Canny edge detection, a clustering algorithm, and the improved least squares method. To verify the superiority of the algorithm, the performance of the algorithm is compared using the self-captured image samples and the GH dataset. The proposed algorithm detects the circle with an average error of two pixels and has a higher detection accuracy, efficiency, and stability than random sample consensus and random Hough transform.

10.
Sensors (Basel) ; 23(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112451

RESUMEN

Appropriate cooling of the converter valve in a high-voltage direct current (HVDC) transmission system is highly significant for the safety, stability, and economical operation of a power grid. The proper adjustment of cooling measures is based on the accurate perception of the valve's future overtemperature state, which is characterized by the valve's cooling water temperature. However, very few previous studies have focused on this need, and the existing Transformer model, which excels in time-series predictions, cannot be directly applied to forecast the valve overtemperature state. In this study, we modified the Transformer and present a hybrid Transformer-FCM-NN (TransFNN) model to predict the future overtemperature state of the converter valve. The TransFNN model decouples the forecast process into two stages: (i) The modified Transformer is used to obtain the future values of the independent parameters; (ii) the relation between the valve cooling water temperature and the six independent operating parameters is fit, and the output of the Transformer is used to calculate the future values of the cooling water temperature. The results of the quantitative experiments showed that the proposed TransFNN model outperformed other models with which it was compared; with TransFNN being applied to predict the overtemperature state of the converter valves, the forecast accuracy was 91.81%, which was improved by 6.85% compared with that of the original Transformer model. Our work provides a novel approach to predicting the valve overtemperature state and acts as a data-driven tool for operation and maintenance personnel to use to adjust valve cooling measures punctually, effectively, and economically.

11.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430627

RESUMEN

Mountainous regions are prone to dammed lake disasters due to their rough topography, scant vegetation, and high summer rainfall. By measuring water level variation, monitoring systems can detect dammed lake events when mudslides block rivers or boost water level. Therefore, an automatic monitoring alarm method based on a hybrid segmentation algorithm is proposed. The algorithm uses the k-means clustering algorithm to segment the picture scene in the RGB color space and the region growing algorithm on the image green channel to select the river target from the segmented scene. The pixel water level variation is used to trigger an alarm for the dammed lake event after the water level has been retrieved. In the Yarlung Tsangpo River basin of the Tibet Autonomous Region of China, the proposed automatic lake monitoring system was installed. We pick up data from April to November 2021, during which the river experienced low, high, and low water levels. Unlike conventional region growing algorithms, the algorithm does not rely on engineering knowledge to pick seed point parameters. Using our method, the accuracy rate is 89.29% and the miss rate is 11.76%, which is 29.12% higher and 17.65% lower than the traditional region growing algorithm, respectively. The monitoring results indicate that the proposed method is a highly adaptable and accurate unmanned dammed lake monitoring system.

12.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36679368

RESUMEN

During these years, the 3D node coverage of heterogeneous wireless sensor networks that are closer to the actual application environment has become a strong focus of research. However, the direct application of traditional two-dimensional planar coverage methods to three-dimensional space suffers from high application complexity, a low coverage rate, and a short life cycle. Most methods ignore the network life cycle when considering coverage. The network coverage and life cycle determine the quality of service (QoS) in heterogeneous wireless sensor networks. Thus, energy-efficient coverage enhancement is a significantly pivotal and challenging task. To solve the above task, an energy-efficient coverage enhancement method, VKECE-3D, based on 3D-Voronoi partitioning and the K-means algorithm is proposed. The quantity of active nodes is kept to a minimum while guaranteeing coverage. Firstly, based on node deployment at random, the nodes are deployed twice using a highly destructive polynomial mutation strategy to improve the uniformity of the nodes. Secondly, the optimal perceptual radius is calculated using the K-means algorithm and 3D-Voronoi partitioning to enhance the network coverage quality. Finally, a multi-hop communication and polling working mechanism are proposed to lower the nodes' energy consumption and lengthen the network's lifetime. Its simulation findings demonstrate that compared to other energy-efficient coverage enhancement solutions, VKECE-3D improves network coverage and greatly lengthens the network's lifetime.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Simulación por Computador , Fenómenos Físicos , Algoritmos
13.
J Environ Manage ; 325(Pt B): 116666, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334448

RESUMEN

The development, protection, and restoration of bays require works in scientific research and applications, and the success of which depends on a well deployment of monitoring stations for marine water quality. However, for bays without historical data, it is difficult to carry out related research on deployment of the monitoring stations, resulting in very few research works. This paper has introduced the affinity propagation (AP) clustering algorithm and achieved good results by correcting the preferences. The results show that under the given preference, that is, when the value of M is -6800, the number of monitoring stations in the Xincun lagoon area is 24. Simultaneous the sensitivity analysis of preferences shows that the number of exemplars decreases with lower preferences, that is, when M decreased from -4000 to -12000, the number also decreased from 70 to 36. However, some exemplars remain unchanged or being changed to adjacent positioning. This shows the stability of computation results and the rationality of AP. The research results can be well applied to other bays, even open waters.


Asunto(s)
Agua de Mar , Calidad del Agua , Monitoreo del Ambiente/métodos , Bahías , China
14.
J Environ Manage ; 344: 118846, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666079

RESUMEN

Different sub-regions of Zhengzhou city have various levels of sensitivity to flood due to the impact of urbanization. Thus, an accurate flood sensitivities assessment is a key tool for flood prevention and urban planning and development. To successfully link the urban flood sensitivity assessment with the real flood situation, a method combining clustering algorithm with comprehensive evaluation is presented. The proposed method is not affected by the classification standard of sensitivities levels and has a small and undemanding demand for flood data. First, Maximal Information Coefficient between conditional factors and flood is employed to determine the weight. Then, the different results are obtained by three clustering algorithms. Finally, a four-layer evaluation structure weighted by analytic hierarchy process is established to select the best flood susceptibility map. A case study in the Zhengzhou city, China shows that the positive scale amplification strategy is relatively best and the flood sensitivity of sub-regions in Zhengzhou city should be divided into four levels obtained by K-Means clustering. Hence, it supplies the valuable insights for the urban planning and flood mitigation.


Asunto(s)
Algoritmos , Inundaciones , China , Planificación de Ciudades , Análisis por Conglomerados
15.
Entropy (Basel) ; 25(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37190385

RESUMEN

Gate-level circuit partitioning is an important development trend for improving the efficiency of simulation in EDA software. In this paper, a gate-level circuit partitioning algorithm, based on clustering and an improved genetic algorithm, is proposed for the gate-level simulation task. First, a clustering algorithm based on betweenness centrality is proposed to quickly identify clusters in the original circuit and achieve the circuit coarse. Next, a constraint-based genetic algorithm is proposed which provides absolute and probabilistic genetic strategies for clustered circuits and other circuits, respectively. This new genetic strategy guarantees the integrity of clusters and is effective for realizing the fine partitioning of gate-level circuits. The experimental results using 12 ISCAS '89 and ISCAS '85 benchmark circuits show that the proposed algorithm is 5% better than Metis, 80% better than KL, and 61% better than traditional genetic algorithms for finding the minimum number of connections between subsets.

16.
Sensors (Basel) ; 22(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35891015

RESUMEN

Hyperspectral imaging can simultaneously acquire spectral and spatial information of the samples and is, therefore, widely applied in the non-destructive detection of grain quality. Supervised learning is the mainstream method of hyperspectral imaging for pixel-level detection of mildew in corn kernels, which requires a large number of training samples to establish the prediction or classification models. This paper presents an unsupervised redundant co-clustering algorithm (FCM-SC) based on multi-center fuzzy c-means (FCM) clustering and spectral clustering (SC), which can effectively detect non-uniformly distributed mildew in corn kernels. This algorithm first carries out fuzzy c-means clustering of sample features, extracts redundant cluster centers, merges the cluster centers by spectral clustering, and finally finds the category of corresponding cluster centers for each sample. It effectively solves the problems of the poor ability of the traditional fuzzy c-means clustering algorithm to classify the data with complex structure distribution and the complex calculation of the traditional spectral clustering algorithm. The experimental results demonstrated that the proposed algorithm could describe the complex structure of mildew distribution in corn kernels and exhibits higher stability, better anti-interference ability, generalization ability, and accuracy than the supervised classification model.


Asunto(s)
Algoritmos , Zea mays , Análisis por Conglomerados , Hongos , Tecnología
17.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36433492

RESUMEN

Noise level is an important parameter for image denoising in many image-processing applications. We propose a noise estimation algorithm based on pixel-level low-rank, low-texture subblocks and principal component analysis for white Gaussian noise. First, an adaptive clustering algorithm, based on a dichotomy merge, adaptive pixel-level low-rank matrix construction method and a gradient covariance low-texture subblock selection method, is proposed to construct a pixel-level low-rank, low-texture subblock matrix. The adaptive clustering algorithm can improve the low-rank property of the constructed matrix and reduce the content of the image information in the eigenvalues of the matrix. Then, an eigenvalue selection method is proposed to eliminate matrix eigenvalues representing the image to avoid an inaccurate estimation of the noise level caused by using the minimum eigenvalue. The experimental results show that, compared with existing state-of-the-art methods, our proposed algorithm has, in most cases, the highest accuracy and robustness of noise level estimation for various scenarios with different noise levels, especially when the noise is high.

18.
Sensors (Basel) ; 22(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36365818

RESUMEN

Laser soldering has been gradually applied to the soldering of electronic components due to the rapid development of microelectronics. However, it is inefficient to use a mechanical shaft to move a laser beam. Here, a laser soldering system is constructed using galvanometer scanning, and an intelligent algorithm is also introduced to optimize the soldering path. Firstly, a laser soldering system for scanning of galvanometers is established, and the functions of visual monitoring, motion planning and parameter integration are presented. Secondly, the position of the laser beam and the corresponding soldering spot are determined, and the coordinate information is provided to plan a route by camera calibration and coordinate system transformation. Finally, the problem of path planning in this system is decomposed into the generation of the soldering point full coverage processing frame, and the route optimization of processing platform and laser beam motion. Furthermore, an improved clustering algorithm, based on the characteristics of system structure, and a hybrid optimization algorithm are designed to deal with the generation of the soldering point full coverage processing frame, the route optimization of processing platform and laser beam motion. In addition, the simulations and experiments are verified by test board. These findings shown that the established system and designed optimization algorithm can promote the efficiency of laser soldering.

19.
Sensors (Basel) ; 22(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214461

RESUMEN

With the various applications of the Internet of Things, research into wireless sensor networks (WSNs) has become increasingly important. However, because of their limited energy, the communication abilities of the wireless nodes distributed in the WSN are limited. The main task of WSNs is to collect more data from targets in an energy-efficient way, because the battery replacement of large amounts of nodes is a labor-consuming work. Although the life of WSNs can be prolonged through energy-harvesting (EH) technology, it is necessary to design an energy-efficient routing protocol for the energy harvesting-based wireless sensor networks (EH-WSNs) as the nodes would be unavailable in the energy harvesting phase. A certain number of unavailable nodes would cause a coverage hole, thereby affecting the WSN's monitoring function of the target environment. In this paper, an adaptive hierarchical-clustering-based routing protocol for EH-WSNs (HCEH-UC) is proposed to achieve uninterrupted coverage of the target region through the distributed adjustment of the data transmission. Firstly, a hierarchical-clustering-based routing protocol is proposed to balance the energy consumption of nodes. Then, a distributed alternation of working modes is proposed to adaptively control the number of nodes in the energy-harvesting mode, which could lead to uninterrupted target coverage. The simulation experimental results verify that the proposed HCEH-UC protocol can prolong the maximal lifetime coverage of WSNs compared with the conventional routing protocol and achieve uninterrupted target coverage using energy-harvesting technology.

20.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36081161

RESUMEN

In order to overcome the problems of object detection in complex scenes based on the YOLOv4-tiny algorithm, such as insufficient feature extraction, low accuracy, and low recall rate, an improved YOLOv4-tiny safety helmet-wearing detection algorithm SCM-YOLO is proposed. Firstly, the Spatial Pyramid Pooling (SPP) structure is added after the backbone network of the YOLOv4-tiny model to improve its adaptability of different scale features and increase its effective features extraction capability. Secondly, Convolutional Block Attention Module (CBAM), Mish activation function, K-Means++ clustering algorithm, label smoothing, and Mosaic data enhancement are introduced to improve the detection accuracy of small objects while ensuring the detection speed. After a large number of experiments, the proposed SCM-YOLO algorithm achieves a mAP of 93.19%, which is 4.76% higher than the YOLOv4-tiny algorithm. Its inference speed reaches 22.9FPS (GeForce GTX 1050Ti), which meets the needs of the real-time and accurate detection of safety helmets in complex scenes.


Asunto(s)
Dispositivos de Protección de la Cabeza , Redes Neurales de la Computación , Algoritmos , Atención , Análisis por Conglomerados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA