Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cytotherapy ; 19(2): 311-326, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28088294

RESUMEN

BACKGROUND AIMS: Primary hematopoietic stem and progenitor cells (HSPCs) are key components of cell-based therapies for blood disorders and are thus the authentic substrate for related research. We propose that ubiquitous small-volume diagnostic samples represent a readily available and as yet untapped resource of primary patient-derived cells for cell- and gene-therapy studies. METHODS: In the present study we compare isolation and storage methods for HSPCs from normal and thalassemic small-volume blood samples, considering genotype, density-gradient versus lysis-based cell isolation and cryostorage media with different serum contents. Downstream analyses include viability, recovery, differentiation in semi-solid media and performance in liquid cultures and viral transductions. RESULTS: We demonstrate that HSPCs isolated either by ammonium-chloride potassium (ACK)-based lysis or by gradient isolation are suitable for functional analyses in clonogenic assays, high-level HSPC expansion and efficient lentiviral transduction. For cryostorage of cells, gradient isolation is superior to ACK lysis, and cryostorage in freezing media containing 50% fetal bovine serum demonstrated good results across all tested criteria. For assays on freshly isolated cells, ACK lysis performed similar to, and for thalassemic samples better than, gradient isolation, at a fraction of the cost and hands-on time. All isolation and storage methods show considerable variation within sample groups, but this is particularly acute for density gradient isolation of thalassemic samples. DISCUSSION: This study demonstrates the suitability of small-volume blood samples for storage and preclinical studies, opening up the research field of HSPC and gene therapy to any blood diagnostic laboratory with corresponding bioethics approval for experimental use of surplus material.


Asunto(s)
Recolección de Muestras de Sangre/métodos , Recolección de Muestras de Sangre/normas , Separación Celular/métodos , Separación Celular/normas , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Leucocitos/patología , Talasemia/sangre , Conservación de la Sangre/métodos , Conservación de la Sangre/normas , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Criopreservación , Estudios de Factibilidad , Congelación , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/fisiología , Humanos , Recuento de Leucocitos , Leucocitos/fisiología , Pruebas Serológicas , Talasemia/patología
2.
Brain Behav ; 5(11): e00404, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26664789

RESUMEN

INTRODUCTION: Neural stem cells (NSCs) reside along the ventricular axis of the mammalian brain. They divide infrequently to maintain themselves and the down-stream progenitors. Due to the quiescent property of NSCs, attempts to deplete these cells using antimitotic agents such as cytosine b-Aarabinofuranoside (Ara-C) have not been successful. We hypothesized that implementing infusion gaps in Ara-C kill paradigms would recruit the quiescent NSCs and subsequently eliminate them from their niches in the subventricular zone (SVZ). METHODS: We infused the right lateral ventricle of adult mice brain with 2% Ara-C using four different paradigms--1: one week; 2: two weeks; 3, 4: two weeks with an infusion gap of 6 and 12 h on day 7. Neurosphere assay (NSA), neural colony-forming cell assay (N-CFCA) and immunofluorescent staining were used to assess depletion of NSCs from the SVZ. RESULTS: Neurosphere formation dramatically decreased in all paradigms immediately after Ara-C infusion. Reduction in neurosphere formation was more pronounced in the 3rd and 4th paradigms. Interestingly 1 week after Ara-C infusion, neurosphere formation recovered toward control values implying the presence of NSCs in the harvested SVZ tissue. Unexpectedly, N-CFCA in the 3rd paradigm, as one of the most effective paradigms, did not result in formation of NSC-derived colonies (colonies >2 mm) even from SVZs harvested 1 week after completion of Ara-C infusion. However, formation of big colonies with serial passaging capability, again confirmed the presence of NSCs. CONCLUSIONS: Overall, these data suggest Ara-C kill paradigms with infusion gaps deplete NSCs in the SVZ more efficiently but the niches would repopulate even after the most vigorous kill paradigm used in this study.


Asunto(s)
Arabinonucleósidos/farmacología , Células-Madre Neurales/efectos de los fármacos , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Ventrículos Laterales/citología , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA