Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.755
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 185(24): 4634-4653.e22, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36347254

RESUMEN

Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of ∼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.


Asunto(s)
Sistemas CRISPR-Cas , Genes Esenciales , Humanos , Células HeLa , Técnicas de Inactivación de Genes , Fenotipo
3.
Cell ; 179(3): 787-799.e17, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31626775

RESUMEN

Genetic screens are critical for the systematic identification of genes underlying cellular phenotypes. Pooling gene perturbations greatly improves scalability but is not compatible with imaging of complex and dynamic cellular phenotypes. Here, we introduce a pooled approach for optical genetic screens in mammalian cells. We use targeted in situ sequencing to demultiplex a library of genetic perturbations following image-based phenotyping. We screened a set of 952 genes across millions of cells for involvement in nuclear factor κB (NF-κB) signaling by imaging the translocation of RelA (p65) to the nucleus. Screening at a single time point across 3 cell lines recovered 15 known pathway components, while repeating the screen with live-cell imaging revealed a role for Mediator complex subunits in regulating the duration of p65 nuclear retention. These results establish a highly multiplexed approach to image-based screens of spatially and temporally defined phenotypes with pooled libraries.


Asunto(s)
Pruebas Genéticas , Genómica , FN-kappa B/genética , Factor de Transcripción ReIA/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Complejo Mediador/genética , ARN Guía de Kinetoplastida/genética
4.
Mol Cell ; 83(8): 1264-1279.e10, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36965480

RESUMEN

The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.


Asunto(s)
ARN Polimerasa II , Ribonucleoproteína Nuclear Pequeña U1 , Animales , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Transcripción Genética , Empalmosomas/genética , Intrones/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme del ARN , Precursores del ARN/genética , Mamíferos/metabolismo
5.
Mol Cell ; 83(21): 3801-3817.e8, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37922872

RESUMEN

Histones shape chromatin structure and the epigenetic landscape. H1, the most diverse histone in the human genome, has 11 variants. Due to the high structural similarity between the H1s, their unique functions in transferring information from the chromatin to mRNA-processing machineries have remained elusive. Here, we generated human cell lines lacking up to five H1 subtypes, allowing us to characterize the genomic binding profiles of six H1 variants. Most H1s bind to specific sites, and binding depends on multiple factors, including GC content. The highly expressed H1.2 has a high affinity for exons, whereas H1.3 binds intronic sequences. H1s are major splicing regulators, especially of exon skipping and intron retention events, through their effects on the elongation of RNA polymerase II (RNAPII). Thus, H1 variants determine splicing fate by modulating RNAPII elongation.


Asunto(s)
Histonas , ARN Polimerasa II , Humanos , Histonas/genética , Histonas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Transcripción Genética , Cromatina/genética , Empalme Alternativo
6.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435176

RESUMEN

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Secuencia de Bases , Intrones/genética , Exones/genética
7.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182478

RESUMEN

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Composición de Base , Exones/genética , Intrones/genética
8.
Genes Dev ; 36(9-10): 550-565, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35589130

RESUMEN

Although splicing is a major driver of RNA nuclear export, many intronless RNAs are efficiently exported to the cytoplasm through poorly characterized mechanisms. For example, GC-rich sequences promote nuclear export in a splicing-independent manner, but how GC content is recognized and coupled to nuclear export is unknown. Here, we developed a genome-wide screening strategy to investigate the mechanism of export of NORAD, an intronless cytoplasmic long noncoding RNA (lncRNA). This screen revealed an RNA binding protein, RBM33, that directs the nuclear export of NORAD and numerous other transcripts. RBM33 directly binds substrate transcripts and recruits components of the TREX-NXF1/NXT1 RNA export pathway. Interestingly, high GC content emerged as the feature that specifies RBM33-dependent nuclear export. Accordingly, RBM33 directly binds GC-rich elements in target transcripts. These results provide a broadly applicable strategy for the genetic dissection of nuclear export mechanisms and reveal a long-sought nuclear export pathway for transcripts with GC-rich sequences.


Asunto(s)
Proteínas de Transporte Nucleocitoplasmático , ARN Viral , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de ARN , ARN Viral/metabolismo
9.
Mol Cell ; 81(20): 4243-4257.e6, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34473946

RESUMEN

Mammalian cells use diverse pathways to prevent deleterious consequences during DNA replication, yet the mechanism by which cells survey individual replisomes to detect spontaneous replication impediments at the basal level, and their accumulation during replication stress, remain undefined. Here, we used single-molecule localization microscopy coupled with high-order-correlation image-mining algorithms to quantify the composition of individual replisomes in single cells during unperturbed replication and under replicative stress. We identified a basal-level activity of ATR that monitors and regulates the amounts of RPA at forks during normal replication. Replication-stress amplifies the basal activity through the increased volume of ATR-RPA interaction and diffusion-driven enrichment of ATR at forks. This localized crowding of ATR enhances its collision probability, stimulating the activation of its replication-stress response. Finally, we provide a computational model describing how the basal activity of ATR is amplified to produce its canonical replication stress response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Replicación del ADN , ADN de Neoplasias/biosíntesis , Algoritmos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , ADN de Neoplasias/genética , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Mutación , Fosforilación , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Imagen Individual de Molécula
10.
EMBO J ; 42(12): e112362, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37155573

RESUMEN

eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Neoplasias , Humanos , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas
11.
Mol Cell ; 74(1): 118-131.e7, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30819645

RESUMEN

Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Poliadenilación , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Regiones no Traducidas 3' , Transporte Activo de Núcleo Celular , Sitios de Unión , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Cinética , Proteínas de Transporte Nucleocitoplasmático/genética , Unión Proteica , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
12.
J Cell Sci ; 137(1)2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197774

RESUMEN

Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Microscopía , Proteínas Mitocondriales , Fosfolípidos
13.
Proc Natl Acad Sci U S A ; 120(34): e2307360120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579139

RESUMEN

In 2022, the European Union introduced the Digital Services Act (DSA), a new legislation to report and moderate harmful content from online social networks. Trusted flaggers are mandated to identify harmful content, which platforms must remove within a set delay (currently 24 h). Here, we analyze the likely effectiveness of EU-mandated mechanisms for regulating highly viral online content with short half-lives. We deploy self-exciting point processes to determine the relationship between the regulated moderation delay and the likely harm reduction achieved. We find that harm reduction is achievable for the most harmful content, even for fast-paced platforms such as Twitter. Our method estimates moderation effectiveness for a given platform and provides a rule of thumb for selecting content for investigation and flagging, managing flaggers' workload.


Asunto(s)
Medios de Comunicación Sociales , Red Social , Humanos , Unión Europea
14.
Proc Natl Acad Sci U S A ; 120(7): e2210666120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749721

RESUMEN

In online content moderation, two key values may come into conflict: protecting freedom of expression and preventing harm. Robust rules based in part on how citizens think about these moral dilemmas are necessary to deal with this conflict in a principled way, yet little is known about people's judgments and preferences around content moderation. We examined such moral dilemmas in a conjoint survey experiment where US respondents (N = 2, 564) indicated whether they would remove problematic social media posts on election denial, antivaccination, Holocaust denial, and climate change denial and whether they would take punitive action against the accounts. Respondents were shown key information about the user and their post as well as the consequences of the misinformation. The majority preferred quashing harmful misinformation over protecting free speech. Respondents were more reluctant to suspend accounts than to remove posts and more likely to do either if the harmful consequences of the misinformation were severe or if sharing it was a repeated offense. Features related to the account itself (the person behind the account, their partisanship, and number of followers) had little to no effect on respondents' decisions. Content moderation of harmful misinformation was a partisan issue: Across all four scenarios, Republicans were consistently less willing than Democrats or independents to remove posts or penalize the accounts that posted them. Our results can inform the design of transparent rules for content moderation of harmful misinformation.


Asunto(s)
Medios de Comunicación Sociales , Habla , Humanos , Comunicación , Principios Morales , Emociones , Política
15.
Proc Natl Acad Sci U S A ; 120(44): e2313790120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883432

RESUMEN

As the use of large language models (LLMs) grows, it is important to examine whether they exhibit biases in their output. Research in cultural evolution, using transmission chain experiments, demonstrates that humans have biases to attend to, remember, and transmit some types of content over others. Here, in five preregistered experiments using material from previous studies with human participants, we use the same, transmission chain-like methodology, and find that the LLM ChatGPT-3 shows biases analogous to humans for content that is gender-stereotype-consistent, social, negative, threat-related, and biologically counterintuitive, over other content. The presence of these biases in LLM output suggests that such content is widespread in its training data and could have consequential downstream effects, by magnifying preexisting human tendencies for cognitively appealing and not necessarily informative, or valuable, content.


Asunto(s)
Evolución Cultural , Lenguaje , Humanos , Recuerdo Mental , Sesgo , Teoría Ética
16.
Proc Natl Acad Sci U S A ; 120(26): e2301664120, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339203

RESUMEN

Turbulence-enhanced mixing of upper ocean heat allows interaction between the tropical atmosphere and cold water masses that impact climate at higher latitudes thereby regulating air-sea coupling and poleward heat transport. Tropical cyclones (TCs) can drastically enhance upper ocean mixing and generate powerful near-inertial internal waves (NIWs) that propagate down into the deep ocean. Globally, downward mixing of heat during TC passage causes warming in the seasonal thermocline and pumps 0.15 to 0.6 PW of heat into the unventilated ocean. The final distribution of excess heat contributed by TCs is needed to understand subsequent consequences for climate; however, it is not well constrained by current observations. Notably, whether or not excess heat supplied by TCs penetrates deep enough to be kept in the ocean beyond the winter season is a matter of debate. Here, we show that NIWs generated by TCs drive thermocline mixing weeks after TC passage and thus greatly deepen the extent of downward heat transfer induced by TCs. Microstructure measurements of the turbulent diffusivity ([Formula: see text]) and turbulent heat flux (J[Formula: see text]) in the Western Pacific before and after the passage of three TCs indicate that mean thermocline values of [Formula: see text] and J[Formula: see text] increased by factors of 2 to 7 and 2 to 4 (95% confidence level), respectively, after TC passage. Excess mixing is shown to be associated with the vertical shear of NIWs, demonstrating that studies of TC-climate interactions ought to represent NIWs and their mixing to accurately capture TC effects on background ocean stratification and climate.

17.
Proc Natl Acad Sci U S A ; 120(16): e2210623120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37043539

RESUMEN

The infection of mammalian cells by viruses and innate immune responses to infection are spatiotemporally organized processes. Cytosolic RNA sensors trigger nuclear translocation of the transcription factor interferon regulatory factor 3 (IRF3) and consequent induction of host immune responses to RNA viruses. Previous genetic screens for factors involved in viral sensing did not resolve changes in the subcellular localization of host or viral proteins. Here, we increased the throughput of our optical pooled screening technology by over fourfold. This allowed us to carry out a genome-wide CRISPR knockout screen using high-resolution multiparameter imaging of cellular responses to Sendai virus infection coupled with in situ cDNA sequencing by synthesis (SBS) to identify 80,408 single guide RNAs (sgRNAs) in 10,366,390 cells-over an order of magnitude more genomic perturbations than demonstrated previously using an in situ SBS readout. By ranking perturbations using human-designed and deep learning image feature scores, we identified regulators of IRF3 translocation, Sendai virus localization, and peroxisomal biogenesis. Among the hits, we found that ATP13A1, an ER-localized P5A-type ATPase, is essential for viral sensing and is required for targeting of mitochondrial antiviral signaling protein (MAVS) to mitochondrial membranes where MAVS must be localized for effective signaling through retinoic acid-inducible gene I (RIG-I). The ability to carry out genome-wide pooled screens with complex high-resolution image-based phenotyping dramatically expands the scope of functional genomics approaches.


Asunto(s)
Virus ARN , Transducción de Señal , Animales , Humanos , ARN , Inmunidad Innata/genética , Virus ARN/genética , Antivirales , Factor 3 Regulador del Interferón/metabolismo , Mamíferos/genética
18.
Semin Cell Dev Biol ; 141: 23-32, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35466054

RESUMEN

The functional relevance of an organoid is dependent on the differentiation, morphology, cell arrangement and biophysical properties, which collectively define the state of an organoid. For an organoid culture, an individual organoid or the cells that compose it, these state variables can be characterised, most easily by transcriptomics and by high-content image analysis. Their states can be compared to their in vivo counterparts. Current evidence suggests that organoids explore a wider state space than organs in vivo due to the lack of niche signalling and the variability of boundary conditions in vitro. Using data-driven state inference and in silico modelling, phase diagrams can be constructed to systematically sort organoids along biochemical or biophysical axes. These phase diagrams allow us to identify control strategies to modulate organoid state. To do so, the biochemical and biophysical environment, as well as the cells that seed organoids, can be manipulated.


Asunto(s)
Organoides , Biología Sintética , Diferenciación Celular , Transducción de Señal
19.
Plant J ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961707

RESUMEN

Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.

20.
Plant J ; 119(2): 689-704, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701004

RESUMEN

The regulation of seed development is critical for determining crop yield. Auxins are vital phytohormones that play roles in various aspects of plant growth and development. However, its role in amino acid biosynthesis and metabolism in seeds is not fully understood. In this study, we identified a mutant with small seeds through forward genetic screening in Medicago truncatula. The mutated gene encodes MtPIN4, an ortholog of PIN1. Using molecular approaches and integrative omics analyses, we discovered that auxin and amino acid content significantly decreased in mtpin4 seeds, highlighting the role of MtPIN4-mediated auxin distribution in amino acid biosynthesis and metabolism. Furthermore, genetic analysis revealed that the three orthologs of PIN1 have specific and overlapping functions in various developmental processes in M. truncatula. Our findings emphasize the significance of MtPIN4 in seed development and offer insights into the molecular mechanisms governing the regulation of seed size in crops. This knowledge could be applied to enhance crop quality by targeted manipulation of seed protein regulatory pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA