Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2220891120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37018203

RESUMEN

Hypoxia is a prognostic biomarker of rapidly growing cancers, where the extent of hypoxia is an indication of tumor progression and prognosis; therefore, hypoxia is also used for staging while performing chemo- and radiotherapeutics for cancer. Contrast-enhanced MRI using EuII-based contrast agents is a noninvasive method that can be used to map hypoxic tumors, but quantification of hypoxia using these agents is challenging due to the dependence of signal on the concentration of both oxygen and EuII. Here, we report a ratiometric method to eliminate concentration dependence of contrast enhancement of hypoxia using fluorinated EuII/III-containing probes. We studied three different EuII/III couples of complexes containing 4, 12, or 24 fluorine atoms to balance fluorine signal-to-noise ratio with aqueous solubility. The ratio between the longitudinal relaxation time (T1) and 19F signal of solutions containing different ratios of EuII- and EuIII-containing complexes was plotted against the percentage of EuII-containing complexes in solution. We denote the slope of the resulting curves as hypoxia indices because they can be used to quantify signal enhancement from Eu, that is related to oxygen concentration, without knowledge of the absolute concentration of Eu. This mapping of hypoxia was demonstrated in vivo in an orthotopic syngeneic tumor model. Our studies significantly contribute toward improving the ability to radiographically map and quantify hypoxia in real time, which is critical to the study of cancer and a wide range of diseases.


Asunto(s)
Flúor , Neoplasias , Humanos , Imagen por Resonancia Magnética/métodos , Hipoxia , Oxígeno
2.
Proc Natl Acad Sci U S A ; 120(27): e2219036120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364102

RESUMEN

We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.


Asunto(s)
Medios de Contraste , Cobre , Cobre/metabolismo , Medios de Contraste/química , Imagen por Resonancia Magnética , Sitios de Unión , Péptidos
3.
Adv Funct Mater ; 34(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-39021614

RESUMEN

Designing plasmonic nanoparticles for biomedical photoacoustic (PA) imaging involves tailoring material properties at the nanometer scale. A key in developing plasmonic PA contrast nanoagents is to engineer their enhanced optical responses in the near-infrared wavelength range, as well as heat transfer properties and photostability. This study introduces anisotropic plasmonic nanosphere aggregates with close interparticle proximity as photostable and efficient contrast agent for PA imaging. Silver (Ag), among plasmonic metals, is particularly attractive due to its strongest optical response and highest heat conductivity. Our results demonstrate that close interparticle proximity in silver nanoaggregates (AgNAs), spatially confined within a polymer shell layer, leads to blackbody-like optical absorption, resulting in robust PA signals through efficient pulsed heat generation and transfer. Additionally, our AgNAs exhibit a high photodamage threshold highlighting their potential to outperform conventional plasmonic contrast agents for high-contrast PA imaging over multiple imaging sessions. Furthermore, we demonstrate the capability of the AgNAs for molecular PA cancer imaging in vivo by incorporating a tumor-targeting peptide moiety.

4.
BMC Med ; 22(1): 329, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135199

RESUMEN

BACKGROUND: Hypersensitivity reactions (HSRs) can occur unexpectedly and be life-threatening when gadolinium-based contrast agents (GBCAs) are used. Gadolinium deposition disease (GDD) and symptoms associated with gadolinium exposure (SAGE) have been controversial for a long time. However, similar studies are currently incomplete or outdated. Therefore, comparing the safety of different GBCAs in terms of HSRs and GDD/SAGE using the latest post-marketing safety data should yield further insights into safely using GBCAs. METHODS: The safety differences between all GBCAs to GDD and the spectrum of GBCA-related HSRs were all compared and analyzed by using the World Health Organization database VigiBase and the FDA Adverse Event Reporting System (FAERS) database in this study. A further analysis of SAGE was also conducted using FAERS data. The lower limit of the reporting odds ratio (ROR) 95% confidence interval was used for signal detection. Moreover, the frequency of HSRs was calculated by dividing the number of reports in VigiBase by the total sales volume (measured in millions) from 2008 to 2022 in the IQVIA Multinational Integrated Data Analysis System. All adverse events were standardized using the Medical Dictionary for Drug Regulatory Activities (MedDRA) 26.0. RESULTS: This study shows that all GBCAs have the potential to induce HSRs, with nonionic linear GBCAs exhibiting a comparatively lower signal. According to standardized MedDRA query stratification analysis, gadobutrol had a greater ROR025 for angioedema. The ROR025 of gadobenate dimeglumine and gadoteridol is larger for anaphylactic/anaphylactoid shock conditions. Regarding severe cutaneous adverse reactions, only gadoversetamide and gadodiamide showed signals in FAERS and VigiBase. There were also differences in the frequency of HSRs between regions. Regarding GDD, gadoterate meglumine, and gadoteridol had a lower ROR025. An analysis of the 29 preferred terms linked to SAGE indicated that special consideration should be given to the risk of skin induration associated with gadoversetamide, gadopentetate dimeglumine, gadobenate dimeglumine, gadodiamide, and gadoteridol. Additionally, gadodiamide and gadoteridol pose a greater risk of skin tightness compared to other GBCAs. CONCLUSIONS: The risk differences among GBCAs using data from several sources were compared in this study. However, as a hypothesis-generating method, a clear causal relationship would require further research and validation.


Asunto(s)
Medios de Contraste , Bases de Datos Factuales , Hipersensibilidad a las Drogas , Gadolinio , Humanos , Gadolinio/efectos adversos , Medios de Contraste/efectos adversos , Hipersensibilidad a las Drogas/epidemiología , Sistemas de Registro de Reacción Adversa a Medicamentos , Estados Unidos , Organización Mundial de la Salud
5.
Small ; 20(27): e2310249, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312082

RESUMEN

Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.


Asunto(s)
Estructuras Metalorgánicas , Enfermedades Vasculares , Estructuras Metalorgánicas/química , Humanos , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/terapia , Técnicas Biosensibles/métodos , Animales
6.
Small ; : e2401787, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38766969

RESUMEN

Cancer is recognized as one of the major causes of mortality, however, early-stage detection can increase the survival chance greatly. It is recognized that folate receptors are gradually overexpressed in the cellular membrane with the progress of cancer from stage 1 to stage 4. Utilizing the fact, herein, developed a porous silica nanoparticle system C1@SiO2-FA-NP; A) impregnated with thermodynamically stable Mn(II) complex (1) molecules within the core of the nanoparticle, and B) surface functionalized with folate units. It exhibited a high longitudinal relaxivity value r1 = 21.45 mM-1s-1 that substantially increased to r1 = 40.97 mM-1s-1 in the presence of 0.67 mM concentration of BSA under the physiological condition. The in vitro fluorescent images after surface conjugation of C1@SiO2-FA-NP with FITC (fluorescein isothiocyanate) buttressed the inclusion of the nanoparticle exclusively within the cancerous HeLa cells than that of healthy HEK293 cells. The importance of the surface-bound folate unit in the nanoparticle is further established by comparing the fluorescent images of HeLa cells in the absence of the group. Finally, the applicability of C1@SiO2-FA-NP as the T1-weighted MRI contrast agent for early-stage cancer diagnosis is established within C57BL/6 mice after infecting the mice with HeLa cells.

7.
Small ; 20(14): e2308547, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988646

RESUMEN

Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.


Asunto(s)
Medios de Contraste , Nanopartículas , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Gadolinio/química , Nanopartículas/química
8.
NMR Biomed ; 37(1): e5035, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37721094

RESUMEN

The aim of the current study was to investigate the feasibility of three-dimensional ultrashort echo time quantitative susceptibility mapping (3D UTE-QSM) for the assessment of gadolinium (Gd) deposition in cortical bone. To this end, 40 tibial bovine cortical bone specimens were divided into five groups then soaked in phosphate-buffered saline (PBS) solutions with five different Gd concentrations of 0, 0.4, 0.8, 1.2, and 1.6 mmol/L for 48 h. Additionally, eight rabbits were randomly allocated into three groups, consisting of a normal-dose macrocyclic gadolinium-based contrast agent (GBCA) group (n = 3), a high-dose macrocyclic GBCA group (n = 3), and a control group (n = 2). All bovine and rabbit tibial bone samples underwent magnetic resonance imaging (MRI) on a 3-T clinical MR system. A 3D UTE-Cones sequence was utilized to acquire images with five different echo times (i.e., 0.032, 0.2, 0.4, 0.8, and 1.2 ms). The UTE images were subsequently processed with the morphology-enabled dipole inversion algorithm to yield a susceptibility map. The average susceptibility was calculated in three regions of interest in the middle of each specimen, and the Pearson's correlation between the estimated susceptibility and Gd concentration was calculated. The bone samples soaked in PBS with higher Gd concentrations exhibited elevated susceptibility values. A mean susceptibility value of -2.47 ± 0.23 ppm was observed for bovine bone soaked in regular PBS, while the mean QSM value increased to -1.75 ± 0.24 ppm for bone soaked in PBS with the highest Gd concentration of 1.6 mmol/L. A strong positive correlation was observed between Gd concentrations and QSM values. The mean susceptibility values of rabbit tibial specimens in the control group, normal-dose GBCA group, and high-dose GBCA group were -4.11 ± 1.52, -3.85 ± 1.33, and -3.39 ± 1.35 ppm, respectively. In conclusion, a significant linear correlation between Gd in cortical bone and QSM values was observed. The preliminary results suggest that 3D UTE-QSM may provide sensitive noninvasive assessment of Gd deposition in cortical bone.


Asunto(s)
Gadolinio , Imagenología Tridimensional , Animales , Bovinos , Conejos , Huesos/diagnóstico por imagen , Medios de Contraste , Hueso Cortical/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
9.
Chemistry ; 30(28): e202400344, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38469901

RESUMEN

[Gd(HP-DO3A)] (gadoteridol) as an active compound of ProHance® is a widely employed contrast agent in clinical MRI scans in the last 30 years. Recent concerns about the long-term retention of gadolinium-based contrast agents (GBCAs) led to a deeper investigation of the structural features underlying the integrity of the paramagnetic metal complex. Several human and nonclinical studies have noted marked differences among the macrocyclic GBCAs, with the least retention of Gd traces and most rapid elimination consistently being reported for [Gd(HP-DO3A)]. It was deemed of interest to assess how minor structural/electronic changes associated to the ligand structure may affect basic properties of the metal complex with several [Gd(HP-DO3A)] analogues synthesized and characterized in the last years. We recently reported that the closest homolog of [Gd(HP-DO3A)], i. e.: [Gd(HB-DO3A)], in which a (±)-2-hydroxy-1-propyl pendant arm is replaced by a (±)-2-hydroxy-1-butyl moiety, showed a significantly different retention behaviour in the model interaction with collagen, despite the apparently very minor structural difference. In this paper we report a comprehensive study of the structural, thermodynamic, kinetic and relaxation properties of [Gd(HB-DO3A)], compared to the parent [Gd(HP-DO3A)] and to other closely related macrocyclic GBCAs to assess whether very minor structural changes can modulate the physico-chemical properties of Gd3+ complexes.


Asunto(s)
Gadolinio , Compuestos Heterocíclicos , Compuestos Organometálicos , Humanos , Medios de Contraste/química , Complejos de Coordinación/química , Gadolinio/química , Compuestos Heterocíclicos/química , Cinética , Ligandos , Imagen por Resonancia Magnética , Compuestos Organometálicos/química
10.
Chemistry ; 30(33): e202400570, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38597334

RESUMEN

Kinetic inertness of Mn(II)-based MRI contrast agents can be improved by increasing the rigidity of the polydentate ligand that tightly coordinate the metal ion. Taking inspiration from the remarkable increase in kinetic inertness of [Mn(CDTA)]2- compared to [Mn(EDTA)]2- due to the cyclohexyl backbone rigidity, we devised that bicyclic ligands would further improve the kinetic inertness of the Mn(II) complexes. The length of the alkyl bridge on the cyclohexane ring was varied from methylene (BCH-DTA), ethylene (BCO-DTA) to propylene (BCN-DTA) to evaluate the influence of the different trans-diaminotetraacetate ligands on relaxometric, thermodynamic and kinetic properties of the Mn(II) complexes. 1H and 17O NMR relaxometric studies showed a slight increase in relaxivity and a faster water exchange rate in these Mn(II)-complexes with respect to [Mn(CDTA)]2-. Solution studies revealed that the conditional stability (pMn) and dissociation half-life (t1/2) at pH 7.4 follow the order [Mn(BCH-DTA)]2-<[Mn(BCO-DTA)]2-<[Mn(BCN-DTA)]2- highlighting the effect of the bridge length on the overall stability of the Mn(II) complexes. Remarkably, [Mn(BCN-DTA)]2- shows an improved pMn value and a 7-times higher kinetic inertness than [Mn(CDTA)]2-. NMR studies on the Zn(II) analogues confirm the rigidity of the bicyclic complexes with an isomerization process at >313 K for the smaller bridged complex [Zn(BCH-DTA)]2-.

11.
J Magn Reson Imaging ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226697

RESUMEN

Gadolinium-based contrast agents (GBCAs) are routinely used in magnetic resonance imaging (MRI). They are essential for choosing the most appropriate medical or surgical strategy for patients with serious pathologies, particularly in oncologic, inflammatory, and cardiovascular diseases. However, GBCAs have been associated with an increased risk of nephrogenic systemic fibrosis in patients with renal failure, as well as the possibility of deposition in the brain, bones, and other organs, even in patients with normal renal function. Research is underway to reduce the quantity of gadolinium injected, without compromising image quality and diagnosis. The next generation of GBCAs will enable a reduction in the gadolinium dose administered. Gadopiclenol is the first of this new generation of GBCAs, with high relaxivity, thus having the potential to reduce the gadolinium dose while maintaining good in vivo stability due to its macrocyclic structure. High-stability and high-relaxivity GBCAs will be one of the solutions for reducing the dose of gadolinium to be administered in clinical practice, while the development of new technologies, including optimization of MRI acquisitions, new contrast mechanisms, and artificial intelligence may help reduce the need for GBCAs. Future solutions may involve a combination of next-generation GBCAs and image-processing techniques to optimize diagnosis and treatment planning while minimizing exposure to gadolinium. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.

12.
J Magn Reson Imaging ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400842

RESUMEN

BACKGROUND: The neurotoxic potential of gadolinium (Gd)-based contrast agents (GBCAs) retention in the brains of patients with type 2 diabetes mellitus (T2DM) is unclear. PURPOSE: To determine the deposition and clearance of GBCAs in T2DM rats and the mechanism by which Gd enhances nucleotide-binding oligomerization domain-3 (NLRP3) inflammasome activation. STUDY TYPE: Cross-sectional, prospective. ANIMAL MODEL: 104 T2DM male Wistar rats. FIELD STRENGTH/SEQUENCE: 9.4-T, T1-weighted fast spin echo sequence. ASSESSMENT: T2DM (male Wistar rats, n = 52) and control group (healthy, male Wistar rats, n = 52) rats received saline, gadodiamide, Gd-diethylenetriaminepentaacetic acid, and gadoterate meglumine for four consecutive days per week for 7 weeks. The distribution and clearance of Gd in the certain brain were assessed by MRI (T1 signal intensity and relaxation rate R1, on the last day of each week), inductively coupled plasma mass-spectroscopy, ultraperformance liquid chromatography mass spectrometry, and transmission electron microscopy. Behavioral tests, histopathological features, and the effects of GBCAs on neuroinflammation were also analyzed. STATISTICAL TESTS: One-way analysis of variance, bonferroni method, and unpaired t-test. A P-value <0.05 was considered statistically significant. RESULTS: The movement distance and appearance time in the open field test of the T2DM rats in the gadodiamide group were significantly shorter than in the other groups. Furthermore, the expression of NLRP3, Pro-Caspase-1, interleukin-1ß (IL-1ß), and apoptosis-associated speck-like protein containing a CARD protein in neurons was significantly higher in the gadodiamide group than in the saline group, as shown by Western blot. Gadodiamide also induced differentiation of microglia into M1 type, decreased the neuronal mitochondrial membrane potential, and significantly increased neuronal apoptosis from flow cytometry. DATA CONCLUSION: T2DM may affect both the deposition and clearance of GBCAs in the brain. Informed by the T2DM model, gadodiamide could mediate the neuroinflammatory response by NLRP3 inflammasome activation. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.

13.
Mol Pharm ; 21(4): 1553-1562, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440796

RESUMEN

Oral dosage forms are the most widely and frequently used formulations to deliver active pharmaceutical ingredients (APIs), due to their ease of administration and noninvasiveness. Knowledge of intragastric release rates and gastric mixing is crucial for predicting the API release profile, especially for immediate release formulations. However, knowledge of the intragastric fate of oral dosage forms in vivo to date is limited, particularly for dosage forms administered when the stomach is in the fed state. An improved understanding of gastric food processing, dosage form location, disintegration times, and food effects is essential for greater understanding for effective API formulation design. In vitro standard and controlled modeling has played a significant role in predicting the behavior of dosage forms in vivo. However, discrepancies are reported between in vitro and in vivo disintegration times, with these discrepancies being greatest in the fed state. Studying the fate of a dosage form in vivo is a challenging process, usually requiring the use of invasive methods, such as intubation. Noninvasive, whole body imaging techniques can however provide unique insights into this process. A scoping review was performed systematically to identify and critically appraise published studies using MRI to visualize oral solid dosage forms in vivo in healthy human subjects. The review identifies that so far, an all-purpose robust contrast agent or dosage form type has not been established for dosage form visualization and disintegration studies in the gastrointestinal system. Opportunities have been identified for future studies, with particular focus on characterizing dosage form disintegration for development after the consumption food, as exemplified by the standard Food and Drug Administration (FDA) high fat meal.


Asunto(s)
Tracto Gastrointestinal , Estómago , Humanos , Administración Oral , Estómago/diagnóstico por imagen , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Formas de Dosificación , Solubilidad , Comprimidos
14.
Nanotechnology ; 35(24)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38467058

RESUMEN

The chemistry of contrast agents (CAs) for magnetic resonance imaging (MRI) applications is an active area of research and, in recent work, it was shown that CA-based graphene oxide (GO) has valuable properties for biomedical uses. GO has a potential as MRI CAs thanks to several functionalities, like its ability to penetrate tissues and cell membranes, as well as easy coupling with therapeutic agents, therefore showing the potential for both a diagnostic and therapeutic role. In this study, we performed a thorough cleaning of the GO sample (synthesized using a modified Hummers method), minimizing the amount of residual manganese down to 73 ppm. Using a wide range of physical-chemical methods (morphology, chemical composition, elemental analysis, spectroscopies, and imaging), we characterized the intrinsic longitudinal and transverse relaxivities of highly purified GO nanosheets. X-band electron paramagnetic resonance allowed to recognize the paramagnetic species involved, and 1.0 T MRI was used to disentangle the relative contributions to the MRI contrast of pristine GO nanosheets arising from structural defects and residual paramagnetic manganese impurities embedded in the nanomaterial. Although experiments show that the MRI relaxivity of GO nanosheets arises from the cumulative effect of structural defects and paramagnetic impurities, we conclude that the latter contribution to the longitudinal and transverse relaxivities becomes irrelevant for highly purified (pristine) GO. This novel finding clearly demonstrates that, apart from trivial manganese inclusion, pristine GO produces an inherent MRI response via structural defects, and therefore it is on its own a suitable candidate as MRI contrast agent.

16.
J Pept Sci ; 30(3): e3544, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37726947

RESUMEN

Magnetic resonance imaging (MRI) is a common medical imaging technique that provides three-dimensional body images. MRI contrast agents improve image contrast by raising the rate of water proton relaxation in specific tissues. Peptides and peptidomimetics act as scaffolds for MRI imaging agents because of their increased size and offer the possibility to engine a higher hydration value within the design. The design of a new Gd-based contrast agent must take into account high stability constants to avoid free Gd(III), with the subsequent nephrotoxicity, and high relaxivity values. This review analyzes various synthetic approaches, reports studies of relaxometric parameters, and focuses on the description and application of Gd(III)-chelates based on peptide and peptidomimetic scaffolds. In addition, the X-ray molecular structures of three DOTA complexes will be reported to emphasize the necessity of using the X-ray diffraction analysis to identify the coordination sphere of the metals and the mechanism of action of the compounds.


Asunto(s)
Medios de Contraste , Peptidomiméticos , Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética/métodos , Péptidos
17.
Neuroradiology ; 66(9): 1481-1493, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38995394

RESUMEN

BACKGROUND: Visualizing (micro)vascular structures remains challenging for researchers and clinicians due to limitations in traditional radiological imaging methods. Exploring the role of vascular development in craniofacial malformations in experimental settings can enhance understanding of these processes, with the effectiveness of high-resolution imaging techniques being crucial for successful research in this field. Micro-CT imaging offers 3D microstructural insights, but requires contrast-enhancing staining agents (CESAs) for visualizing (micro)-vascular tissues, known as contrast-enhanced micro-CT (CECT). As effective contrast agents are crucial for optimal visualization, this review focuses on comparative studies investigating such agents for micro-vascular tissue imaging using micro-CT. Furthermore, we demonstrate the utilization of B-Lugol solution as a promising contrast agent for acquiring high-quality micro-CT images of (micro)vascular structures in human embryonic samples. METHOD: This scoping review followed Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols. PubMed database provided relevant articles, screened initially by title and abstract. Inclusion and exclusion criteria defined outcomes of interest. RESULTS: From an initial search, 273 records were identified, narrowed down to 9 articles after applying our criteria. Additionally, two articles were added through citation searching. This, a total of 11 articles were incorporated in this study. CONCLUSION: This micro-CT contrast agent review underscores the need for tailored choices based on research goals. Both Barium sulfate and Iodine-based agents showing excellent results, providing high resolution (micro) vascular content, especially in ex-vivo specimens. However, careful consideration of protocols and tissue characteristics remains imperative for optimizing the effectiveness of micro-CT imaging for the study of cranio-facial vascular development.


Asunto(s)
Medios de Contraste , Microtomografía por Rayos X , Humanos , Microtomografía por Rayos X/métodos , Imagenología Tridimensional/métodos
18.
Neuroradiology ; 66(8): 1335-1344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38658472

RESUMEN

PURPOSE: To avoid contrast administration in spontaneous intracranial hypotension (SIH), some studies suggest accepting diffuse pachymeningeal hyperintensity (DPMH) on non-contrast fluid-attenuated inversion recovery (FLAIR) as an equivalent sign to diffuse pachymeningeal enhancement (DPME) on contrast-enhanced T1WI (T1ce), despite lacking thorough performance metrics. This study aimed to comprehensively explore its feasibility. METHODS: In this single-center retrospective study, between April 2021 and November 2023, brain MRI examinations of 43 patients clinically diagnosed with SIH were assessed using 1.5 and 3.0 Tesla MRI scanners. Two radiologists independently assessed the presence or absence of DPMH on FLAIR and DPME on T1ce, with T1ce serving as a gold-standard for pachymeningeal thickening. The contribution of the subdural fluid collections to DPMH was investigated with quantitative measurements. Using Cohen's kappa statistics, interobserver agreement was assessed. RESULTS: In 39 out of 43 patients (90.7%), pachymeningeal thickening was observed on T1ce. FLAIR sequence produced an accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 72.1%, 71.8%, 75.0%, 96.6%, and 21.4% respectively, for determining pachymeningeal thickening. FLAIR identified pachymeningeal thickening in 28 cases; however, among these, 21 cases (75%) revealed that the pachymeningeal hyperintense signal was influenced by subdural fluid collections. False-negative rate for FLAIR was 28.2% (11/39). CONCLUSION: The lack of complete correlation between FLAIR and T1ce in identifying pachymeningeal thickening highlights the need for caution in removing contrast agent administration from the MRI protocol of SIH patients, as it reveals a major criterion (i.e., pachymeningeal enhancement) of Bern score.


Asunto(s)
Medios de Contraste , Hipotensión Intracraneal , Imagen por Resonancia Magnética , Meninges , Humanos , Femenino , Masculino , Hipotensión Intracraneal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Meninges/diagnóstico por imagen , Meninges/patología , Anciano , Sensibilidad y Especificidad , Estudios de Factibilidad , Aumento de la Imagen/métodos
19.
J Nanobiotechnology ; 22(1): 120, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500178

RESUMEN

Nanotechnology has demonstrated immense potential in various fields, especially in biomedical field. Among these domains, the development of nanotechnology for diagnosing and treating vascular anomalies has garnered significant attention. Vascular anomalies refer to structural and functional anomalies within the vascular system, which can result in conditions such as vascular malformations and tumors. These anomalies can significantly impact the quality of life of patients and pose significant health concerns. Nanoscale contrast agents have been developed for targeted imaging of blood vessels, enabling more precise identification and characterization of vascular anomalies. These contrast agents can be designed to bind specifically to abnormal blood vessels, providing healthcare professionals with a clearer view of the affected areas. More importantly, nanotechnology also offers promising solutions for targeted therapeutic interventions. Nanoparticles can be engineered to deliver drugs directly to the site of vascular anomalies, maximizing therapeutic effects while minimizing side effects on healthy tissues. Meanwhile, by incorporating functional components into nanoparticles, such as photosensitizers, nanotechnology enables innovative treatment modalities such as photothermal therapy and photodynamic therapy. This review focuses on the applications and potential of nanotechnology in the imaging and therapy of vascular anomalies, as well as discusses the present challenges and future directions.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Malformaciones Vasculares , Humanos , Medios de Contraste , Calidad de Vida , Nanotecnología , Nanoestructuras/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Nanopartículas/química , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/terapia , Nanomedicina/métodos
20.
J Nanobiotechnology ; 22(1): 162, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594700

RESUMEN

To overcome the problems of commercial magnetic resonance imaging (MRI) contrast agents (CAs) (i.e., small molecule Gd chelates), we have proposed a new concept of Gd macrochelates based on the coordination of Gd3+ and macromolecules, e.g., poly(acrylic acid) (PAA). To further decrease the r2/r1 ratio of the reported Gd macrochelates that is an important factor for T1 imaging, in this study, a superior macromolecule hydrolyzed polymaleic anhydride (HPMA) was found to coordinate Gd3+. The synthesis conditions were optimized and the generated Gd-HPMA macrochelate was systematically characterized. The obtained Gd-HPMA29 synthesized in a 100 L of reactor has a r1 value of 16.35 mM-1 s-1 and r2/r1 ratio of 2.05 at 7.0 T, a high Gd yield of 92.7% and a high product weight (1074 g), which demonstrates the feasibility of kilogram scale facile synthesis. After optimization of excipients and sterilization at a high temperature, the obtained Gd-HPMA30 formulation has a pH value of 7.97, osmolality of 691 mOsmol/kg water, density of 1.145 g/mL, and viscosity of 2.2 cP at 20 â„ƒ or 1.8 cP at 37 â„ƒ, which meet all specifications and physicochemical criteria for clinical injections indicating the immense potential for clinical applications.


Asunto(s)
Medios de Contraste , Anhídridos Maleicos , Metacrilatos , Polímeros , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA