Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401844

RESUMEN

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Asunto(s)
Factor H de Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusión , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/química , Factor H de Complemento/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Activación de Complemento/efectos de los fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólisis/efectos de los fármacos , Vía Alternativa del Complemento/efectos de los fármacos , Inactivadores del Complemento/farmacología , Eritrocitos/metabolismo
2.
Fish Shellfish Immunol ; 151: 109741, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964436

RESUMEN

Decay-accelerating factor (DAF) is an essential member of the complement regulatory protein family that plays an important role in immune response and host homeostasis in mammals. However, the immune function of DAF has not been well characterized in bony fish. In this study, a complement regulatory protein named CiDAF was firstly characterized from Ctenopharyngodon idella and its potential roles were investigated in intestine following bacterial infection. Similar to mammalian DAFs, CiDAF has multiple complement control protein (CCP) functional domains, suggesting the evolutionary conservation of DAFs. CiDAF was broadly expressed in all tested tissues, with a relatively high expression level detected in the spleen and kidney. In vivo immune challenge experiments revealed that CiDAF strongly responded to bacterial pathogens (Aeromonas hydrophila and Aeromonas veronii) and PAMPs (lipopolysaccharide (LPS) or muramyl dipeptide (MDP)) challenges. In vitro RNAi experiments indicated that knockdown of CiDAF could upregulate the expression of complement genes (C4b, C5 and C7) and inflammatory cytokines (TNF-α, IL-1ß and IL-8). Moreover, 2000 ng/mL of CiDAF agonist progesterone effectively alleviated LPS- or MDP-induced intestinal inflammation by regulating expression of complement factors, TLR/PepT1 pathway genes and inflammatory cytokines. Overall, these findings revealed that CiDAF may act as a negative regulator of intestinal complement pathway and immune response to bacterial challenge in grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Proteínas de Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Intestinos , Animales , Carpas/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Intestinos/inmunología , Regulación de la Expresión Génica/inmunología , Filogenia , Perfilación de la Expresión Génica/veterinaria , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria , Proteínas del Sistema Complemento/inmunología
3.
J Pathol ; 258(2): 199-209, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35851954

RESUMEN

High-level expression of decay-accelerating factor, CD55, has previously been found in human gastric cancer (GC) and intestinal metaplasia (IM) tissues. Therapeutic effects of CD55 inhibition in cancer have been reported. However, the role of Helicobacter pylori infection and virulence factors in the induction of CD55 and its association with histological changes of the human gastric mucosa remain incompletely understood. We hypothesised that CD55 would be increased during infection with more virulent strains of H. pylori, and with more marked gastric mucosal pathology. RT-qPCR and immunohistochemical analyses of gastric biopsy samples from 42 H. pylori-infected and 42 uninfected patients revealed that CD55 mRNA and protein were significantly higher in the gastric antrum of H. pylori-infected patients, and this was associated with the presence of IM, but not atrophy, or inflammation. Increased gastric CD55 and IM were both linked with colonisation by vacA i1-type strains independently of cagA status, and in vitro studies using isogenic mutants of vacA confirmed the ability of VacA to induce CD55 and sCD55 in gastric epithelial cell lines. siRNA experiments to investigate the function of H. pylori-induced CD55 showed that CD55 knockdown in gastric epithelial cells partially reduced IL-8 secretion in response to H. pylori, but this was not due to modulation of bacterial adhesion or cytotoxicity. Finally, plasma samples taken from the same patients were analysed for the soluble form of CD55 (sCD55) by ELISA. sCD55 levels were not influenced by IM and did not correlate with gastric CD55 mRNA levels. These results suggest a new link between active vacA i1-type H. pylori, IM, and CD55, and identify CD55 as a molecule of potential interest in the management of IM as well as GC treatment. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Citotoxinas/metabolismo , Mucosa Gástrica/patología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Metaplasia/patología , ARN Mensajero/metabolismo , Neoplasias Gástricas/patología
4.
Proc Natl Acad Sci U S A ; 116(20): 9953-9958, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036650

RESUMEN

The complement system is highly efficient in targeting pathogens, but lack of its apposite regulation results in host-cell damage, which is linked to diseases. Thus, complement activation is tightly regulated by a series of proteins, which primarily belong to the regulators of complement activation (RCA) family. Structurally, these proteins are composed of repeating complement control protein (CCP) domains where two to four successive domains contribute to the regulatory functions termed decay-accelerating activity (DAA) and cofactor activity (CFA). However, the precise constitution of the functional units and whether these units can be joined to form a larger composition with dual function have not been demonstrated. Herein, we have parsed the functional units for DAA and CFA by constructing chimeras of the decay-accelerating factor (DAF) that exhibits DAA and membrane cofactor protein (MCP) that exhibits CFA. We show that in a four-CCP framework, a functional unit for each of the regulatory activities is formed by only two successive CCPs wherein each participates in the function, albeit CCP2 has a bipartite function. Additionally, optimal activity requires C-terminal domains that enhance the avidity of the molecule for C3b/C4b. Furthermore, by composing a four-CCP DAF-MCP chimera with robust CFA (for C3b and C4b) and DAA (for classical and alternative pathway C3 convertases), named decay cofactor protein, we show that CCP functional units can be linked to design a dual-activity regulator. These data indicate that the regulatory determinants for these two biological processes are distinct and modular in nature.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/genética , Escherichia coli , Humanos , Proteína Cofactora de Membrana , Pichia , Dominios Proteicos , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína
5.
Curr Issues Mol Biol ; 43(2): 1081-1089, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34563046

RESUMEN

In systemic hemolysis and in hematuric forms of kidney injury, the major heme scavenging protein, hemopexin (HPX), becomes depleted, and the glomerular microvasculature (glomeruli) is exposed to high concentrations of unbound heme, which, in addition to causing oxidative injury, can activate complement cascades; thus, compounding extent of injury. It is unknown whether unbound heme can also activate specific complement regulatory proteins that could defend against complement-dependent injury. Isolated rat glomeruli were incubated in media supplemented with HPX-deficient (HPX-) or HPX-containing (HPX+) sera as a means of achieving different degrees of heme partitioning between incubation media and glomerular cells. Expression of heme oxygenase (HO)-1 and of the complement activation inhibitors, decay-accelerating factor (DAF), CD59, and complement receptor-related gene Y (Crry), was assessed by western blot analysis. Expression of HO-1 and of the GPI-anchored DAF and CD59 proteins increased in isolated glomeruli incubated with HPX- sera with no effect on Crry expression. Exogenous heme (hemin) did not further induce DAF but increased Crry expression. HPX modulates heme-mediated induction of complement activation controllers in glomeruli. This effect could be of translational relevance in glomerular injury associated with hematuria.


Asunto(s)
Antígenos de Superficie/metabolismo , Activación de Complemento , Hemopexina/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Antígenos de Superficie/genética , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemopexina/genética , Ratas , Receptores de Superficie Celular/genética
6.
Transgenic Res ; 30(1): 11-21, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387103

RESUMEN

Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf-/-) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf-/- rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf-/- rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.


Asunto(s)
Lesión Renal Aguda/genética , Antígenos CD55/genética , Activación de Complemento/genética , Podocitos/metabolismo , Lesión Renal Aguda/patología , Albuminuria , Animales , Anticuerpos Antiidiotipos/farmacología , Antígenos CD55/deficiencia , Antígenos CD55/inmunología , Sistemas CRISPR-Cas/genética , Activación de Complemento/inmunología , Convertasas de Complemento C3-C5/genética , Complemento C5/genética , Técnicas de Inactivación de Genes , Complejo Antigénico de Nefritis de Heymann/genética , Complejo Antigénico de Nefritis de Heymann/inmunología , Humanos , Podocitos/patología , Ratas
7.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924622

RESUMEN

Staphylococcus aureus is a species of Gram-positive staphylococcus. It can cause sinusitis, respiratory infections, skin infections, and food poisoning. Recently, it was discovered that S. aureus infects epithelial cells, but the interaction between S. aureus and the host is not well known. In this study, we confirmed S. aureus to be internalized by HaCaT cells using the ESAT-6-like protein EsxB and amplified within the host over time by escaping host immunity. S. aureus increases the expression of decay-accelerating factor (CD55) on the surfaces of host cells, which inhibits the activation of the complement system. This mechanism makes it possible for S. aureus to survive in host cells. S. aureus, sufficiently amplified within the host, is released through the initiation of cell death. On the other hand, the infected host cells increase their surface expression of UL16 binding protein 1 to inform immune cells that they are infected and try to be eliminated. These host defense systems seem to involve the alteration of tight junctions and the induction of ligand expression to activate immune cells. Taken together, our study elucidates a novel aspect of the mechanisms of infection and immune system evasion for S. aureus.


Asunto(s)
Antígenos CD55/metabolismo , Activación de Complemento , Staphylococcus aureus/fisiología , Animales , Proteínas Bacterianas/metabolismo , Muerte Celular , Endocitosis , Células HaCaT , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones Endogámicos BALB C , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo , Regulación hacia Arriba/genética
8.
Biol Blood Marrow Transplant ; 25(8): 1486-1491, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30871975

RESUMEN

Transplant-associated thrombotic microangiopathy (TA-TMA) is a severe complication in patients after hematopoietic stem cell transplantation. The pathogenesis of TA-TMA is still unclear. Previous studies showed that complement activation plays an important role in the development of TA-TMA. However, no data showed which kind of complement component triggers this process. In this study we found that heme oxygenase-1, which could induce decay-accelerating factor (DAF) and inhibit the membrane-attack complex, was significantly decreased in patients with TA-TMA. DAF levels in the TA-TMA group were in line with the levels in the myocardial infarction group but were lower than levels in the healthy, noncomplication, infection, and graft-versus-host disease groups (P < .05). Human umbilical vein endothelial cells (HUVECs) incubated with TA-TMA plasma showed lower DAF levels compared with that incubated with normal human plasma. Notably, treatment with N-acetylcysteine (NAC), a drug against oxidation, increased the level of DAF. NAC could also inhibit complement activation in HUVECs incubated with TA-TMA plasma. Taken together, we propose that NAC represents a new potential therapy for patients facing TA-TMA.


Asunto(s)
Activación de Complemento , Enfermedad Injerto contra Huésped/sangre , Trasplante de Células Madre Hematopoyéticas , Hemo-Oxigenasa 1/sangre , Microangiopatías Trombóticas/sangre , Acetilcisteína/farmacología , Adolescente , Adulto , Anciano , Aloinjertos , Niño , Femenino , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Persona de Mediana Edad , Microangiopatías Trombóticas/tratamiento farmacológico , Microangiopatías Trombóticas/etiología
9.
Clin Exp Immunol ; 197(3): 376-386, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31091357

RESUMEN

Anti-phospholipid syndrome (APS) is characterized by recurrent pathological pregnancy, arterial or venous thrombosis in the presence of anti-phospholipid antibody (aPL). Complement activation is recognized as an intermediate link leading to placental thrombosis and placental inflammation in APS model mice. Decay accelerating factor (DAF, CD55), MAC-inhibitory protein (MAC-IP, CD59) and membrane co-factor protein (MCP, CD46) are important complement inhibitory proteins (CIPs) highly expressed in normal placenta to curb excessive complement activation and its mediated injuries. Anti-ß2 glycoprotein I (anti-ß2GPI) antibody is an important aPL. We found that placental DAF and CD46 decreased in ß2GPI passively immunized APS model mice, accompanied by C3 deposition, neutrophil infiltration and increased proinflammatory cytokine levels detected in its placenta. Progesterone supplement can up-regulate DAF but not CD46 expression, curb C3 activation and decrease proinflammatory cytokines levels to reduce fetal loss frequency. Progesterone receptor antagonist (mifepristone) or knock-down DAF with specific siRNA, above the protective effects of progesterone, were significantly weakened. Another sex hormone, oestrogen, has no significant effect on placental DAF and C3 contents and fetal loss frequency in the APS mice model. This may be an important mechanism by which progesterone induces maternal-fetal immune tolerance. At the same time, it may provide evidence for the use of progesterone in APS abortion patients.


Asunto(s)
Síndrome Antifosfolípido/inmunología , Antígenos CD55/inmunología , Placenta/inmunología , Placenta/lesiones , Complicaciones del Embarazo/inmunología , Progesterona/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Síndrome Antifosfolípido/patología , Femenino , Ratones , Ratones Endogámicos BALB C , Placenta/patología , Embarazo , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/patología , Regulación hacia Arriba/inmunología
10.
Platelets ; 28(4): 409-413, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27736290

RESUMEN

In immune thrombocytopenia (ITP), antibodies reacting with platelet membrane glycoproteins (GP) mediate premature platelet cleavage, resulting in thrombocytopenia and therefore a risk of bleeding. These antibodies may induce complement activation, thus mediating complement-induced platelet destruction. In this study, we investigated the possibility of an additional complement-related pathogenic mechanism, where antibodies against the complement-regulatory factors CD55 and CD59 may directly interfere with normal complement function. CD55 downregulates both the classic and the alternative activation pathways, while CD59 blocks the formation of the membrane attack complex; both proteins are present on platelets and may therefore be targets of autoantibodies. Using the simultaneous analysis of specific platelet antibodies (SASPA) assay, we found that in some cases of immune-mediated thrombocytopenia, anti-CD55 and -CD59 antibodies are detectable in patients' sera and/or on their autologous platelets in combination with antibodies against platelet-specific GP. Although antibodies against CD55 and CD59 seem to be a rare phenomenon, this finding may have clinical relevance due to the availability of highly effective therapeutics targeting the complement system.


Asunto(s)
Autoanticuerpos/inmunología , Plaquetas/metabolismo , Proteínas del Sistema Complemento/inmunología , Trombocitopenia/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven
11.
Exp Eye Res ; 138: 126-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149093

RESUMEN

CC chemokine ligand 2 (CCL2) recruits macrophages to reduce inflammatory responses. Decay-accelerating factor (DAF) is a membrane regulator of the classical and alternative pathways of complement activation. In view of the link between complement genes and retinal diseases, we evaluated the retinal phenotype of C57BL/6J mice and mice lacking Ccl2 and/or Daf1 at 12 months of age, using scanning laser ophthalmoscopic imaging, electroretinography (ERG), histology, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. In comparison to C57BL/6J mice, mutant mice had an increased number of autofluorescent foci, with the greatest number in the Ccl2(-/-)/Daf1(-/-) retina. ERG amplitudes in Ccl2(-/-)/Daf1(-/-), Ccl2(-/-) and Daf1(-/-) mice were reduced, with the greatest reduction in Ccl2(-/-)/Daf1(-/-) mice. TUNEL-positive cells were not seen in C57BL/6J retina, but were prevalent in the outer and inner nuclear layers of Ccl2(-/-)Daf1(-/-) mice and were present at reduced density in Ccl2(-/-) or Daf1(-/-) mice. Cell loss was most pronounced in the outer and inner nuclear layers of Ccl2(-/-)/Daf1(-/-) mice. The levels of the endoplasmic reticulum chaperone GPR78 and transcription factor ATF4 were significantly increased in the Ccl2(-/-)/Daf1(-/-) retina. In comparison to the C57BL/6J retina, the phosphorylation of NF-κB p65, p38, ERK and JNK was significantly upregulated while SIRT1 was significantly downregulated in the Ccl2(-/-)/Daf1(-/-) retina. Our results suggest that loss of Ccl2 and Daf1 causes retinal neuronal death and degeneration which is related to increased endoplasmic reticulum stress, oxidative stress and inflammation.


Asunto(s)
Antígenos CD55/fisiología , Quimiocina CCL2/fisiología , Degeneración Retiniana/etiología , Degeneración Retiniana/fisiopatología , Neuronas Retinianas/patología , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Electrorretinografía , Chaperón BiP del Retículo Endoplásmico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Choque Térmico/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Degeneración Retiniana/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Xenotransplantation ; 22(3): 221-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25847130

RESUMEN

Xenotransplantation has the potential to alleviate the organ shortage that prevents many patients with end-stage renal disease from enjoying the benefits of kidney transplantation. Despite significant advances in other models, pig-to-primate kidney xenotransplantation has met limited success. Preformed anti-pig antibodies are an important component of the xenogeneic immune response. To address this, we screened a cohort of 34 rhesus macaques for anti-pig antibody levels. We then selected animals with both low and high titers of anti-pig antibodies to proceed with kidney transplant from galactose-α1,3-galactose knockout/CD55 transgenic pig donors. All animals received T-cell depletion followed by maintenance therapy with costimulation blockade (either anti-CD154 mAb or belatacept), mycophenolate mofetil, and steroid. The animal with the high titer of anti-pig antibody rejected the kidney xenograft within the first week. Low-titer animals treated with anti-CD154 antibody, but not belatacept exhibited prolonged kidney xenograft survival (>133 and >126 vs. 14 and 21 days, respectively). Long-term surviving animals treated with the anti-CD154-based regimen continue to have normal kidney function and preserved renal architecture without evidence of rejection on biopsies sampled at day 100. This description of the longest reported survival of pig-to-non-human primate kidney xenotransplantation, now >125 days, provides promise for further study and potential clinical translation.


Asunto(s)
Rechazo de Injerto/inmunología , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/inmunología , Trasplante de Riñón , Trasplante Heterólogo , Animales , Animales Modificados Genéticamente/inmunología , Ligando de CD40/inmunología , Rechazo de Injerto/diagnóstico , Supervivencia de Injerto/genética , Xenoinjertos/inmunología , Inmunosupresores/farmacología , Riñón/inmunología , Trasplante de Riñón/métodos , Macaca mulatta , Porcinos
13.
Muscle Nerve ; 49(5): 749-56, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24037951

RESUMEN

INTRODUCTION: The site of pathology in myasthenia gravis (MG) is the neuromuscular junction (NMJ). Our goal was to determine the ability to direct complement inhibition to the NMJ. METHODS: A single-chain antibody directed against the alpha subunit of the acetylcholine receptor was synthesized (scFv-35) and coupled to decay-accelerating factor (DAF, scFv-35-DAF). scFv-35-DAF was tested in a passive model of experimentally acquired MG. RESULTS: Administration of scFv-35-DAF to mice deficient in intrinsic complement inhibitors produced no weakness despite confirmation of its localization to the NMJ and no evidence of tissue destruction related to complement activation. Rats with experimentally acquired MG treated with scFV-35-DAF showed less weakness and a reduction of complement deposition. CONCLUSIONS: We demonstrate a method to effectively target a therapeutic agent to the NMJ.


Asunto(s)
Antígenos CD55/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Miastenia Gravis Autoinmune Experimental/tratamiento farmacológico , Unión Neuromuscular , Receptores Colinérgicos , Anticuerpos de Cadena Única/uso terapéutico , Animales , Ratones , Miastenia Gravis Autoinmune Experimental/inmunología , Ratas , Anticuerpos de Cadena Única/inmunología
14.
Neurosurg Focus ; 37(6): E14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25434383

RESUMEN

Glioblastoma multiforme (GBM) is the most common type of primary brain tumor, and current treatment regimens are only marginally effective. One of the most vexing and malignant aspects of GBM is its pervasive infiltration into surrounding brain tissue. This review describes the role of the Wilms tumor 1 gene (WT1) and its relationship to GBM. WT1 has several alternative splicing products, one of which, the KTS(+) variant, has been demonstrated to be involved in the transcriptional activation of a variety of oncogenes as well as the inhibition of tumor suppressor genes. Further, this paper will examine the relationship of WT1 with CD97, a gene that codes for an epidermal growth factor receptor family member, an adhesion G-protein-coupled receptor, thought to promote tumor invasiveness and migration. The authors suggest that further research into WT1 and CD97 will allow clinicians to begin to deal more effectively with the infiltrative behavior displayed by GBM and design new therapies that target this deadly disease.


Asunto(s)
Antígenos CD/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Tumor de Wilms/genética , Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Receptores Acoplados a Proteínas G , Tumor de Wilms/metabolismo
15.
J Basic Clin Physiol Pharmacol ; 35(3): 121-127, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598858

RESUMEN

The complement is a crucial factor of the innate immune system. However, its activation can lead to various diseases, so it needs to be controlled. In mammals, surface-bound complement regulatory proteins safeguard cells from uncontrolled complement-mediated lysis. One of the human complement regulators is CD55, also known as the decay-accelerating factor (DAF), a single-chain, type I cell surface protein anchored to glycosylphosphatidylinositol (GPI). The genetic loss of the complement regulatory protein CD55 leads to a fatal illness known as CHAPLE disease. The complement and innate immunity become hyperactive in this disease, causing angiopathic thrombosis and protein-losing enteropathy. Patients with CHAPLE disease experience abdominal pain, nausea, vomiting, diarrhea, loss of appetite, weight loss, impaired growth, and swelling. This genetic condition has no known cure, and managing its symptoms can be challenging. Pozelimab, a human monoclonal immunoglobulin IgG4 antibody, is a drug that targets the terminal complement protein C5. The drug has a high affinity for both wild-type and variant human C5. Pozelimab has received designations such as fast track, orphan drug, and rare pediatric disease, making it a significant medical breakthrough. It is currently the only available treatment for this disease. In this review, we have summarized the preclinical and clinical data on pozelimab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD55/metabolismo , Animales , Complemento C5/antagonistas & inhibidores , Enteropatías Perdedoras de Proteínas/tratamiento farmacológico
16.
Mol Immunol ; 171: 47-55, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795684

RESUMEN

Myopia is regarded as a worldwide epidemic ocular disease, has been proved related to inflammation. CD55, also known as decay-accelerating factor (DAF) can modulate the activation of complement through inhibiting the formation of complement 3 convertase and its dysregulation is involved in various inflammatory diseases. To investigate the association between CD55 and myopia, and to test whether CD55 can inhibit myopia development by suppressing inflammation in the eye, we use three different animal models including monocular form-deprivation myopia, myopia induced by TNF-α administration and allergic conjunctivitis animal model to reveal the CD55 in myopia development. The tears of thirty-eight participants with different spherical equivalents were collected and CD55 in the tears were also analyzed. Complement 3 and complement 5 levels increased while CD55 levels decreased in allergic conjunctivitis and myopic eyes. After anti-inflammatory drugs administration, CD55 expression was increased in monocular form-deprivation myopia model. We also found inflammatory cytokines TGF-ß, IL-6, TNF-α, and IL-1ß may enhance complement 3 and complement 5 activation while CD55 level was suppressed contrary. Moreover, lower CD55 levels were found in the tears of patients with myopia with decreased diopter values. Finally, CD55-Fc administration on the eyelids can inhibit the elongation of axial length and change of refractive error. CD55-Fc application also suppress myopia development subsequent to complement 3 and complement 5 reduction and can lower myopia-specific (MMP-2 and TGF-ß) cytokine expression in TNF-α induced myopia animal model. This suggests that CD55 can inhibit myopia development by suppression of complement activation and eventual down-regulation of inflammation.


Asunto(s)
Antígenos CD55 , Modelos Animales de Enfermedad , Inflamación , Miopía , Adolescente , Animales , Femenino , Humanos , Masculino , Adulto Joven , Antígenos CD55/metabolismo , Activación de Complemento/efectos de los fármacos , Complemento C3/metabolismo , Conjuntivitis Alérgica/inmunología , Conjuntivitis Alérgica/metabolismo , Citocinas/metabolismo , Miopía/metabolismo , Lágrimas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Complemento C5/metabolismo
17.
Immune Netw ; 24(2): e17, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38725672

RESUMEN

We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.

18.
Front Immunol ; 14: 1290684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38406578

RESUMEN

The transcription factor Kruppel-like factor 4 (KLF4) regulates the expression of immunosuppressive and anti-thrombotic proteins. Despite its importance in maintaining homeostasis, the signals that control its expression and the mechanism of its transactivation remain unclarified. CD55 [aka decay accelerating factor (DAF)], now known to be a regulator of T and B cell responses, biases between pro- and anti-inflammatory processes by controlling autocrine C3a and C5a receptor (C3ar1/C5ar1) signaling in cells. The similarity in CD55's and KLF4's regulatory effects prompted analyses of their functional relationship. In vascular endothelial cells (ECs), CD55 upregulation accompanied KLF4 expression via a p-CREB and CREB Binding Protein (CBP) mechanism. In both ECs and macrophages, CD55 expression was essential for KLF4's downregulation of pro-inflammatory/pro-coagulant proteins and upregulation of homeostatic proteins. Mechanistic studies showed that upregulation of KLF4 upregulated CD55. The upregulated CD55 in turn enabled the recruitment of p-CREB and CBP to KLF4 needed for its transcription. Activation of adenylyl cyclase resulting from repression of autocrine C3ar1/C5ar1 signaling by upregulated CD55 concurrently led to p-CREB and CBP recruitment to KLF4-regulated genes, thereby conferring KLF4's transactivation. Accordingly, silencing CD55 in statin-treated HUVEC disabled CBP transfer from the E-selectin to the eNOS promoter. Importantly, silencing CD55 downregulated KLF4's expression. It did the same in untreated HUVEC transitioning from KLF4low growth to KLF4hi contact inhibition. KLF4's and CD55's function in ECs and macrophages thus are linked via a novel mechanism of gene transactivation. Because the two proteins are co-expressed in many cell types, CD55's activity may be broadly tied to KLF4's immunosuppressive and antithrombotic activities.


Asunto(s)
Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Endoteliales/metabolismo , Regulación hacia Arriba , Regiones Promotoras Genéticas
19.
Cancer Lett ; 551: 215935, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36216147

RESUMEN

CD55, or decay accelerating factor, is a membrane lipid microdomain-associated, GPI-anchored protein implicated in the shielding of cells from complement-mediated attack via accelerating decay of C3 and C5. Loss of CD55 is associated with a number of pathologies due to hyperactivation of the complement system. CD55 is also implicated in cancer progression thought to be driven via its role in cell shielding mechanisms. We now appreciate that CD55 can signal intracellularly to promote malignant transformation, cancer progression, cell survival, angiogenesis, and inhibition of apoptosis. Outside-in signaling via CD55 is mediated by signaling pathways including JNK, JAK/STAT, MAPK/NF-κB, and LCK. Moreover, CD55 is enriched in the cancer stem cell (CSC) niche of multiple tumors including breast, ovarian, cervical, and can be induced by chemotherapeutics and hypoxic environments. CSCs are implicated in tumor recurrence and chemoresistance. Here, we review the unexpected roles of CD55 in cancer including the roles of canonical and noncanonical pathways that CD55 orchestrates. We will highlight opportunities for therapeutic targeting CD55 and gaps in the field that require more in-depth mechanistic insights.

20.
Biomed Pharmacother ; 143: 112224, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649351

RESUMEN

T-cells orchestrate the inflammatory responses in atherosclerosis, and their function is modified by the lipoprotein milieu and complement activity. We investigated the effects of fluvastatin on the expression of complement decay-accelerating factor (DAF/CD55) antigen, and the levels of transcription factors in circulating T-cells in hypercholesterolemia. The hypercholesterolemic state was associated with the upregulation of DAF expression on circulating T-cells and increased levels nuclear factor kappa B (NF-kB) and interferon regulatory factor 4 (IRF4). Notably, the elevated levels of DAF and NF-kB expression persisted following treatment with fluvastatin. Therefore, the pleiotropic effects of fluvastatin are partially ascribed to its ability to mediate T-cell activation and regulate complement activity. Consequently, enhanced therapeutic interventions that targets complement-induced T-cell activation may be important in mitigating the development of atherosclerosis and major cardiovascular events in individuals with hypercholesterolemia.


Asunto(s)
Colesterol/sangre , Proteínas del Sistema Complemento/metabolismo , Fluvastatina/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipercolesterolemia/tratamiento farmacológico , Activación de Linfocitos/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Animales , Biomarcadores/sangre , Antígenos CD55/metabolismo , Modelos Animales de Enfermedad , Hipercolesterolemia/inmunología , Hipercolesterolemia/metabolismo , Factores Reguladores del Interferón/metabolismo , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA