Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.882
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Genet ; 39(9): 644-645, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37419697

RESUMEN

The role of linker H1 histones in plant defence has recently been investigated. Sheikh et al. found that Arabidopsis thaliana plants that were lacking all three H1 proteins showed increased disease resistance, but when primed, failed to induce enhanced resistance. Differences in epigenetic patterns could be the cause of defective priming.


Asunto(s)
Arabidopsis , Cromatina , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Arabidopsis/genética
2.
Plant J ; 118(2): 388-404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38150324

RESUMEN

The intercellular space or apoplast constitutes the main interface in plant-pathogen interactions. Apoplastic subtilisin-like proteases-subtilases-may play an important role in defence and they have been identified as targets of pathogen-secreted effector proteins. Here, we characterise the role of the Solanaceae-specific P69 subtilase family in the interaction between tomato and the vascular bacterial wilt pathogen Ralstonia solanacearum. R. solanacearum infection post-translationally activated several tomato P69s. Among them, P69D was exclusively activated in tomato plants resistant to R. solanacearum. In vitro experiments showed that P69D activation by prodomain removal occurred in an autocatalytic and intramolecular reaction that does not rely on the residue upstream of the processing site. Importantly P69D-deficient tomato plants were more susceptible to bacterial wilt and transient expression of P69B, D and G in Nicotiana benthamiana limited proliferation of R. solanacearum. Our study demonstrates that P69s have conserved features but diverse functions in tomato and that P69D is involved in resistance to R. solanacearum but not to other vascular pathogens like Fusarium oxysporum.


Asunto(s)
Ralstonia solanacearum , Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Nicotiana/genética , Ralstonia solanacearum/fisiología , Enfermedades de las Plantas/microbiología
3.
EMBO J ; 40(6): e105543, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586810

RESUMEN

Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces.


Asunto(s)
Proteínas Relacionadas con la Autofagia/genética , Virus de la Influenza A/patogenicidad , Proteínas Asociadas a Microtúbulos/metabolismo , Infecciones por Orthomyxoviridae/genética , Eliminación de Secuencia , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/virología , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Embrión de Pollo , Citocinas/metabolismo , Perros , Células de Riñón Canino Madin Darby , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Dominios Proteicos , Replicación Viral
4.
Drug Resist Updat ; 72: 101030, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043443

RESUMEN

The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Humanos , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple
5.
Infect Immun ; 92(3): e0045523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38289122

RESUMEN

Melioidosis is a disease that is difficult to treat due to the causative organism, Burkholderia pseudomallei being inherently antibiotic resistant and it having the ability to invade, survive, and replicate in an intracellular environment. Combination therapy approaches are routinely being evaluated in animal models with the aim of improving the level of protection and clearance of colonizing bacteria detected. In this study, a subunit vaccine layered with the antibiotic finafloxacin was evaluated in vivo against an inhalational infection with B. pseudomallei in Balb/c mice. Groups of mice vaccinated, infected, and euthanized at antibiotic initiation had a reduced bacterial load compared to those that had not been immunized. In addition, the subunit vaccine provided a synergistic effect when it was delivered with a CpG ODN and finafloxacin was initiated at 48 h post-challenge. Vaccination was also shown to improve the outcome, in a composite measure of survival and clearance. In summary, layering a subunit vaccine with the antibiotic finafloxacin is a promising therapeutic alternative for use in the treatment of B. pseudomallei infections.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Animales , Ratones , Ratones Endogámicos BALB C , Melioidosis/tratamiento farmacológico , Melioidosis/prevención & control , Antibacterianos/uso terapéutico , Vacunación , Vacunas de Subunidad , Modelos Animales de Enfermedad
6.
Mol Microbiol ; 120(1): 45-53, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36840376

RESUMEN

Bacteria are continuously exposed to predation from bacteriophages (phages) and, in response, have evolved a broad range of defence systems. These systems can prevent the replication of phages and other mobile genetic elements (MGE). Defence systems are often encoded together in genomic loci defined as "defence islands", a tendency that has been extensively exploited to identify novel antiphage systems. In the last few years, >100 new antiphage systems have been discovered, and some display homology to components of the immune systems of plants and animals. In many instances, prediction tools have found domains with similar predicted functions present as different combinations within distinct antiphage systems. In this Perspective Article, we review recent reports describing the discovery and the predicted domain composition of several novel antiphage systems. We discuss several examples of similar protein domains adopted by different antiphage systems, including domains of unknown function (DUFs), domains involved in nucleic acid recognition and degradation, and domains involved in NAD+ depletion. We further discuss the potential evolutionary advantages that could have driven the independent acquisition of these domains by different antiphage systems.


Asunto(s)
Bacteriófagos , Animales , Bacteriófagos/genética , Bacterias/genética , Dominios Proteicos
7.
Cell Physiol Biochem ; 58(3): 226-249, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857359

RESUMEN

BACKGROUND/AIMS: Important benefits of intermittent hypoxic training (IHT) have emerged as an effective tool for enhancing adaptive potential in different pathological states, among which acute hypoxia dominates. Therefore, the aim of our study was to evaluate the mechanisms related to the effects of the nitric oxide system (nitrites, nitrates, carbamide, and total polyamine content) on ADP-stimulated oxygen consumption and oxidative phosphorylation in heart and liver mitochondria and biomarkers of oxidative stress in the blood, heart, and liver of rats exposed to the IHT method and acute hypoxia and treated with the amino acid L-arginine (600 mg/kg, 30 min) or the NO synthase inhibitor L-NNA (35 mg/kg, 30 min) prior to each IHT session. METHODS: We analysed the modulation of the system of oxygen-dependent processes (mitochondrial respiration with the oxygraphic method, microsomal oxidation, and lipoperoxidation processes using biochemical methods) in tissues during IHT in the formation of short-term and long-term effects (30, 60, and 180 days after the last IHT session) with simultaneous administration of L-arginine. In particular, we investigated how mitochondrial functions are modulated during intermittent hypoxia with the use of oxidation substrates (succinate or α-ketoglutarate) in bioenergetic mechanisms of cellular stability and adaptation. RESULTS: The IHT method is associated with a significant increase in the production of endogenous nitric oxide measured by the levels of its stable metabolite, nitrite anion, in both plasma (almost 7-fold) and erythrocytes (more than 7-fold) of rats. The intensification of nitric oxide-dependent pathways of metabolic transformations in the energy supply processes in the heart and liver, accompanied by oscillatory mechanisms of adaptation in the interval mode, causes a probable decrease in the production of urea and polyamines in plasma and liver, but not in erythrocytes. The administration of L-arginine prior to the IHT sessions increased the level of the nitrite-reducing component of the nitric oxide cycle, which persisted for up to 180 days of the experiment. CONCLUSION: Thus, the efficacy of IHT and its nitrite-dependent component shown in this study is associated with the formation of long-term adaptive responses by preventing the intensification of lipoperoxidation processes in tissues due to pronounced changes in the main enzymes of antioxidant defence and stabilisation of erythrocyte membranes, which has a pronounced protective effect on the system of regulation of oxygen-dependent processes as a whole.


Asunto(s)
Arginina , Hipoxia , Consumo de Oxígeno , Ratas Wistar , Animales , Masculino , Hipoxia/metabolismo , Ratas , Arginina/farmacología , Arginina/análogos & derivados , Arginina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nitritos/metabolismo
8.
BMC Plant Biol ; 24(1): 327, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658826

RESUMEN

Oomycetes are filamentous organisms that resemble fungi in terms of morphology and life cycle, primarily due to convergent evolution. The success of pathogenic oomycetes lies in their ability to adapt and overcome host resistance, occasionally transitioning to new hosts. During plant infection, these organisms secrete effector proteins and other compounds during plant infection, as a molecular arsenal that contributes to their pathogenic success. Genomic sequencing, transcriptomic analysis, and proteomic studies have revealed highly diverse effector repertoires among different oomycete pathogens, highlighting their adaptability and evolution potential.The obligate biotrophic oomycete Plasmopara viticola affects grapevine plants (Vitis vinifera L.) causing the downy mildew disease, with significant economic impact. This disease is devastating in Europe, leading to substantial production losses. Even though Plasmopara viticola is a well-known pathogen, to date there are scarce reviews summarising pathogenicity, virulence, the genetics and molecular mechanisms of interaction with grapevine.This review aims to explore the current knowledge of the infection strategy, lifecycle, effector molecules, and pathogenicity of Plasmopara viticola. The recent sequencing of the Plasmopara viticola genome has provided new insights into understanding the infection strategies employed by this pathogen. Additionally, we will highlight the contributions of omics technologies in unravelling the ongoing evolution of this oomycete, including the first in-plant proteome analysis of the pathogen.


Asunto(s)
Oomicetos , Enfermedades de las Plantas , Vitis , Oomicetos/patogenicidad , Oomicetos/fisiología , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Vitis/genética , Virulencia , Evolución Biológica , Interacciones Huésped-Patógeno
9.
Proc Biol Sci ; 291(2018): 20232298, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471551

RESUMEN

Plants produce an array of chemical and mechanical defences that provide protection against many herbivores and pathogens. Putatively defensive compounds and structures can even occur in floral rewards: for example, the pollen of some plant taxa contains toxic compounds or possesses conspicuous spines. Yet little is known about whether pollen defences restrict host-plant use by bees. In other words, do bees, like other insect herbivores, tolerate the defences of their specific host plants while being harmed by non-host defences? To answer this question, we compared the effects of a chemical defence from Lupinus (Fabaceae) pollen and a putative mechanical defence (pollen spines) from Asteraceae pollen on larval survival of nine bee species in the tribe Osmiini (Megachilidae) varying in their pollen-host use. We found that both types of pollen defences reduce larval survival rate in some bee species. These detrimental effects were, however, mediated by host-plant associations, with bees being more tolerant of the pollen defences of their hosts, relative to the defences of plant taxa exploited by other species. This pattern strongly suggests that bees are adapted to the pollen defences of their hosts, and that host-plant use by bees is constrained by their ability to tolerate such defences.


Asunto(s)
Flores , Plantas , Abejas , Animales , Flores/química , Polen/química , Insectos , Larva , Polinización
10.
Proc Biol Sci ; 291(2025): 20240686, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889785

RESUMEN

Maintenance and activation of the immune system incur costs, not only in terms of substrates and energy but also via collateral oxidative damage to host cells or tissues during immune response. So far, associations between immune function and oxidative damage have been primarily investigated at intra-specific scales. Here, we hypothesized that pathogen-driven selection should favour the evolution of effective immunosurveillance mechanisms (e.g. major histocompatibility complex, MHC) and antioxidant defences to mitigate oxidative damage resulting from immune function. Using phylogenetically informed comparative approaches, we provided evidence for the correlated evolution of host oxidative physiology and MHC-based immunosurveillance in birds. Species selected for more robust MHC-based immunosurveillance (higher gene copy numbers and allele diversity) showed stronger antioxidant defences, although selection for MHC diversity still showed a positive evolutionary association with oxidative damage to lipids. Our results indicate that historical pathogen-driven selection for highly duplicated and diverse MHC could have promoted the evolution of efficient antioxidant mechanisms, but these evolutionary solutions may be insufficient to keep oxidative stress at bounds. Although the precise nature of mechanistic links between the MHC and oxidative stress remains unclear, our study suggests that a general evolutionary investment in immune function may require co-adaptations at the level of host oxidative metabolism.


Asunto(s)
Aves , Complejo Mayor de Histocompatibilidad , Estrés Oxidativo , Animales , Complejo Mayor de Histocompatibilidad/genética , Aves/fisiología , Aves/inmunología , Evolución Biológica , Filogenia
11.
Proc Biol Sci ; 291(2029): 20240915, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39191282

RESUMEN

A pathogen arriving on a host typically encounters a diverse community of microbes that can shape priority effects, other within-host interactions and infection outcomes. In plants, environmental nutrients can drive trade-offs between host growth and defence and can mediate interactions between co-infecting pathogens. Nutrients may thus alter the outcome of pathogen priority effects for the host, but this possibility has received little experimental investigation. To disentangle the relationship between nutrient availability and co-infection dynamics, we factorially manipulated the nutrient availability and order of arrival of two foliar fungal pathogens (Rhizoctonia solani and Colletotrichum cereale) on the grass tall fescue (Lolium arundinaceum) and tracked disease outcomes. Nutrient addition did not influence infection rates, infection severity or plant biomass. Colletotrichum cereale facilitated R. solani, increasing its infection rate regardless of their order of inoculation. Additionally, simultaneous and C. cereale-first inoculations decreased plant growth and-in plants that did not receive nutrient addition-increased leaf nitrogen concentrations compared to uninoculated plants. These effects were partially, but not completely, explained by the duration and severity of pathogen infections. This study highlights the importance of understanding the intricate associations between the order of pathogen arrival, host nutrient availability and host defence to better predict infection outcomes.


Asunto(s)
Colletotrichum , Lolium , Nutrientes , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Colletotrichum/fisiología , Nutrientes/metabolismo , Lolium/microbiología , Rhizoctonia/fisiología , Coinfección/microbiología , Interacciones Huésped-Patógeno , Hojas de la Planta/microbiología , Nitrógeno/metabolismo
12.
Proc Biol Sci ; 291(2018): 20232478, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471556

RESUMEN

Defensive chemicals of prey can be sequestered by some coevolved predators, which take advantage of prey toxins for their own defence. The increase in the number of invasive species in the Anthropocene has resulted in new interactions among non-coevolved predator and prey species. While novelty in chemical defence may provide a benefit for invasive prey against non-coevolved predators, resident predators with the right evolutionary pre-adaptations might benefit from sequestering these novel defences. Here, we chose a well-known system of invasive species to test whether non-coevolved predators can sequester and use toxins from exotic prey. Together with the invasive prickly pear plants, cochineal bugs (Dactylopius spp.) are spreading worldwide from their native range in the Americas. These insects produce carminic acid, a defensive anthraquinone that some specialized predators sequester for their own defence. Using this system, we first determined whether coccinellids that prey on cochineal bugs in the Mediterranean region tolerated, sequestered, and released carminic acid in reflex bleeding. Then, we quantified the deterrent effect of carminic acid against antagonistic ants. Our results demonstrate that the Australian coccinellid Cryptolaemus montrouzieri sequestered carminic acid, a substance absent in its coevolved prey, from exotic cochineal bugs. When attacked, the predator released this substance through reflex bleeding at concentrations that were deterrent against antagonistic ants. These findings reveal that non-coevolved predators can sequester and use novel toxins from exotic prey and highlights the surprising outcomes of novel interactions that arise from species invasions.


Asunto(s)
Hormigas , Escarabajos , Animales , Carmín , Conducta Predatoria , Australia , Insectos , Especies Introducidas
13.
Proc Biol Sci ; 291(2015): 20232305, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228180

RESUMEN

Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.


Asunto(s)
Apicomplexa , Mariposas Diurnas , Calor Extremo , Parásitos , Animales , Humanos , Mariposas Diurnas/fisiología , Interacciones Huésped-Parásitos , Apicomplexa/fisiología
14.
Planta ; 260(1): 8, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789631

RESUMEN

MAIN CONCLUSION: A gene-to-metabolite approach afforded new insights regarding defence mechanisms in oat plants that can be incorporated into plant breeding programmes for the selection of markers and genes related to disease resistance. Monitoring metabolite levels and changes therein can complement and corroborate transcriptome (mRNA) data on plant-pathogen interactions, thus revealing mechanisms involved in pathogen attack and host defence. A multi-omics approach thus adds new layers of information such as identifying metabolites with antimicrobial properties, elucidating metabolomic profiles of infected and non-infected plants, and reveals pathogenic requirements for infection and colonisation. In this study, two oat cultivars (Dunnart and SWK001) were inoculated with Pseudomonas syringae pathovars, pathogenic and non-pathogenic on oat. Following inoculation, metabolites were extracted with methanol from leaf tissues at 2, 4 and 6 days post-infection and analysed by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer system. Relatedly, mRNA was isolated at the same time points, and the cDNA analysed by quantitative PCR (RT-qPCR) for expression levels of selected gene transcripts associated with avenanthramide (Avn) biosynthesis. The targeted amino acids, hydroxycinnamic acids and Avns were successfully quantified. Distinct cultivar-specific differences in the metabolite responses were observed in response to pathogenic and non-pathogenic strains. Trends in aromatic amino acids and hydroxycinnamic acids seem to indicate stronger activation and flux through these pathways in Dunnart as compared to SWK001. A positive correlation between hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) gene expression and the abundance of Avn A in both cultivars was documented. However, transcript profiling of selected genes involved in Avn synthesis did not reveal a clear pattern to distinguish between the tolerant and susceptible cultivars.


Asunto(s)
Avena , Perfilación de la Expresión Génica , Metaboloma , Enfermedades de las Plantas , Pseudomonas syringae , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Avena/microbiología , Avena/genética , Avena/metabolismo , Metaboloma/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Fitoquímicos/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Transcriptoma , ortoaminobenzoatos/metabolismo
15.
Plant Biotechnol J ; 22(7): 1929-1941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366355

RESUMEN

Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad , Enfermedades de las Plantas , Inmunidad de la Planta , Triticum , Triticum/genética , Triticum/microbiología , Triticum/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiología , Mutagénesis , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Puccinia/fisiología , Plantas Modificadas Genéticamente
16.
Plant Biotechnol J ; 22(9): 2461-2471, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38735054

RESUMEN

The reduction in crop yield caused by pathogens and pests presents a significant challenge to global food security. Genetic engineering, which aims to bolster plant defence mechanisms, emerges as a cost-effective solution for disease control. However, this approach often incurs a growth penalty, known as the growth-defence trade-off. The precise molecular mechanisms governing this phenomenon are still not completely understood, but they generally fall under two main hypotheses: a "passive" redistribution of metabolic resources, or an "active" regulatory choice to optimize plant fitness. Despite the knowledge gaps, considerable practical endeavours are in the process of disentangling growth from defence. The plant microbiome, encompassing both above- and below-ground components, plays a pivotal role in fostering plant growth and resilience to stresses. There is increasing evidence which indicates that plants maintain intimate associations with diverse, specifically selected microbial communities. Meta-analyses have unveiled well-coordinated, two-way communications between plant shoots and roots, showcasing the capacity of plants to actively manage their microbiota for balancing growth with immunity, especially in response to pathogen incursions. This review centers on successes in making use of specific root-associated microbes to mitigate the growth-defence trade-off, emphasizing pivotal advancements in unravelling the mechanisms behind plant growth and defence. These findings illuminate promising avenues for future research and practical applications.


Asunto(s)
Microbiota , Desarrollo de la Planta , Inmunidad de la Planta , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/inmunología , Plantas/microbiología , Plantas/inmunología , Plantas/metabolismo , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/inmunología , Productos Agrícolas/genética
17.
New Phytol ; 242(1): 278-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37984873

RESUMEN

Mimicry is the phenomenon in which one species (the mimic) closely resembles another (the model), enhancing its own fitness by deceiving a third party into interacting with it as if it were the model. In plants, mimicry is used primarily to gain fitness by withholding rewards from mutualists or deterring herbivores cost-effectively. While extensive work has been documented on putative defence mimicry, limited investigation has been conducted in the field of chemical mimicry. In this study, we used field experiments, chemical analyses, behavioural assays, and electrophysiology, to test the hypothesis that the birthwort Aristolochia delavayi employs chemical mimicry by releasing leaf scent that closely resembles stink bug defensive compounds and repels vertebrate herbivores. We show that A. delavayi leaf scent is chemically and functionally similar to the generalized defensive volatiles of stink bugs and that the scent effectively deters vertebrate herbivores, likely through the activation of TRPA1 channels via (E)-2-alkenal compounds. This study provides an unequivocal example of chemical mimicry in plants, revealing intricate dynamics between plants and vertebrate herbivores. Our study underscores the potency of chemical volatiles in countering vertebrate herbivory, urging further research to uncover their potentially underestimated importance.


Asunto(s)
Aristolochia , Heterópteros , Animales , Herbivoria , Aristolochia/química , Aristolochia/fisiología , Heterópteros/fisiología , Vertebrados , Plantas
18.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105548

RESUMEN

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Asunto(s)
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiología , Fósforo/metabolismo , Oomicetos/fisiología , Oomicetos/patogenicidad , Eucalyptus/microbiología , Eucalyptus/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantones/microbiología , Simbiosis/fisiología , Especificidad de la Especie , Ambiente
19.
New Phytol ; 244(3): 786-797, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39223868

RESUMEN

Plant survival to a potential plethora of diverse environmental insults is underpinned by coordinated communication amongst organs to help shape effective responses to these environmental challenges at the whole plant level. This interorgan communication is supported by a complex signal network that regulates growth, development and environmental responses. Nitric oxide (NO) has emerged as a key signalling molecule in plants. However, its potential role in interorgan communication has only recently started to come into view. Direct and indirect evidence has emerged supporting that NO and related species (S-nitrosoglutathione, nitro-linolenic acid) are mobile interorgan signals transmitting responses to stresses such as hypoxia and heat. Beyond their role as mobile signals, NO and related species are involved in mediating xylem development, thus contributing to efficient root-shoot communication. Moreover, NO and related species are regulators in intraorgan systemic defence responses aiming an effective, coordinated defence against pathogens. Beyond its in planta signalling role, NO and related species may act as ex planta signals coordinating external leaf-to-leaf, root-to-leaf but also plant-to-plant communication. Here, we discuss these exciting developments and emphasise how their manipulation may provide novel strategies for crop improvement.


Asunto(s)
Óxido Nítrico , Óxido Nítrico/metabolismo , Transducción de Señal , Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Xilema/metabolismo , Xilema/fisiología
20.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375883

RESUMEN

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Asunto(s)
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/genética , Laccaria/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Monoterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA