Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37137307

RESUMEN

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteostasis
2.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33275901

RESUMEN

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteolisis , Proteoma/metabolismo , Adulto , Línea Celular , Bases de Datos de Proteínas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adulto Joven
3.
Mol Cell ; 78(6): 1086-1095, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32407673

RESUMEN

Transcription is epigenetically regulated by the orchestrated function of chromatin-binding proteins that tightly control the expression of master transcription factors, effectors, and supportive housekeeping genes required for establishing and propagating the normal and malignant cell state. Rapid advances in chemical biology and functional genomics have facilitated exploration of targeting epigenetic proteins, yielding effective strategies to target transcription while reducing toxicities to untransformed cells. Here, we review recent developments in conventional active site and allosteric inhibitors, peptidomimetics, and novel proteolysis-targeted chimera (PROTAC) technology that have deepened our understanding of transcriptional processes and led to promising preclinical compounds for therapeutic translation, particularly in cancer.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Neoplasias/genética , Animales , Antineoplásicos/farmacología , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética/fisiología , Epigenómica/métodos , Humanos , Neoplasias/terapia , Proteolisis/efectos de los fármacos , Factores de Transcripción/metabolismo
4.
Annu Rev Pharmacol Toxicol ; 64: 291-312, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37585660

RESUMEN

Thalidomide and its derivatives are powerful cancer therapeutics that are among the best-understood molecular glue degraders (MGDs). These drugs selectively reprogram the E3 ubiquitin ligase cereblon (CRBN) to commit target proteins for degradation by the ubiquitin-proteasome system. MGDs create novel recognition interfaces on the surface of the E3 ligase that engage in induced protein-protein interactions with neosubstrates. Molecular insight into their mechanism of action opens exciting opportunities to engage a plethora of targets through a specific recognition motif, the G-loop. Our analysis shows that current CRBN-based MGDs can in principle recognize over 2,500 proteins in the human proteome that contain a G-loop. We review recent advances in tuning the specificity between CRBN and its MGD-induced neosubstrates and deduce a set of simple rules that govern these interactions. We conclude that rational MGD design efforts will enable selective degradation of many more proteins, expanding this therapeutic modality to more disease areas.


Asunto(s)
Talidomida , Ubiquitina-Proteína Ligasas , Humanos , Talidomida/farmacología , Talidomida/uso terapéutico , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
5.
Mol Cell ; 76(5): 797-810.e10, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31606272

RESUMEN

Protein silencing represents an essential tool in biomedical research. Targeted protein degradation (TPD) strategies exemplified by PROTACs are rapidly emerging as modalities in drug discovery. However, the scope of current TPD techniques is limited because many intracellular materials are not substrates of proteasomal clearance. Here, we described a novel targeted-clearance strategy (autophagy-targeting chimera [AUTAC]) that contains a degradation tag (guanine derivatives) and a warhead to provide target specificity. As expected from the substrate scope of autophagy, AUTAC degraded fragmented mitochondria as well as proteins. Mitochondria-targeted AUTAC accelerated both the removal of dysfunctional fragmented mitochondria and the biogenesis of functionally normal mitochondria in patient-derived fibroblast cells. Cytoprotective effects against acute mitochondrial injuries were also seen. Canonical autophagy is viewed as a nonselective bulk decomposition system, and none of the available autophagy-inducing agents exhibit useful cargo selectivity. With its target specificity, AUTAC provides a new modality for research on autophagy-based drugs.


Asunto(s)
Autofagia/fisiología , Guanina/química , Proteolisis/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Guanina/fisiología , Humanos , Mitocondrias/metabolismo , Mitofagia/fisiología , Ingeniería de Proteínas/métodos , Proteínas Quinasas/metabolismo , Estabilidad Proteica
6.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199570

RESUMEN

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Asunto(s)
Inflamasomas , Leucocitos Mononucleares , Animales , Humanos , Ratones , Línea Celular , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transporte de Proteínas/fisiología
7.
Ann Oncol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39293515

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer (mCRPC) that progresses on androgen receptor pathway inhibitors (ARPIs) may continue to be driven by AR signaling. BMS-986365 is an orally administered ligand-directed degrader targeting the AR via a first-in-class dual mechanism of AR degradation and antagonism. CC-94676-PCA-001 (NCT04428788) is a phase 1 multicenter study of BMS-986365 in patients with progressive mCRPC. PATIENTS AND METHODS: Patients who progressed on androgen deprivation therapy, ≥ 1 ARPI, and taxane chemotherapy (unless declined/ineligible) were enrolled. The study included dose escalation (Part A) and expansion (Part B) of BMS-986365 up to 900 mg twice daily (BID). Primary objectives were safety, tolerability, and to define maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D). Key secondary endpoints included decline in prostate-specific antigen ≥50% (PSA50) and radiographic progression-free survival (rPFS). RESULTS: Parts A and B enrolled 27 and 68 patients, respectively. In Part B, the median number of prior therapies was 4 (range 2-11). The most common treatment-related adverse events (TRAEs) were asymptomatic prolonged corrected QT interval (47%) and bradycardia (34%). Part A MTD was not reached and RP2D selection is ongoing. Across Part B three highest doses (400-900 mg BID, n = 60), PSA50 was 32% (n = 19), including 50% (n = 10/20) at 900 mg; median rPFS (95% CI) was 6.3 months (5.3-12.6), including 8.3 months (3.8-16.6) at 900 mg; and rPFS was longer in patients without versus with prior chemotherapy: 16.5 months (5.5-not evaluable) versus 5.5 months (2.7-8.3), respectively. Efficacy was observed in patients with AR ligand binding domain (LBD) WT or with AR LBD mutations. CONCLUSIONS: BMS-986365 was well tolerated, with a manageable safety profile, and demonstrated activity in heavily pretreated patients with potentially higher benefit in chemotherapy-naïve patients. These data show BMS-986365's potential to overcome resistance to current ARPIs, regardless of AR LBD mutation status.

8.
Breast Cancer Res Treat ; 203(2): 383-396, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37847455

RESUMEN

PURPOSE: Estrogen Receptor α (ERα) is a well-established therapeutic target for Estrogen Receptor (ER)-positive breast cancers. Both Selective Estrogen Receptor Degraders (SERD) and PROTAC ER degraders are synthetic compounds suppressing the ER activity through the degradation of ER. However, the differences between SERD and PROTAC ER degraders are far from clear. METHODS: The effect of PROTAC ER degrader ERD-148 and SERD fulvestrant on protein degradation was evaluated by western blot analysis. The cell proliferation was tested by WST-8 assays and the gene expressions were assessed by gene microarray and real-time RT-PCR analysis after the compound treatment. RESULTS: ERD-148 is a potent and selective PROTAC ERα degrader. It degrades not only unphosphorylated ERα but also the phosphorylated ERα in the cells. In contrast, the SERD fulvestrant showed much-reduced degradation potency on the phosphorylated ERα. The more complete degradation of ERα by ERD-148 translates into a greater maximum cell growth inhibition. However, ERD-148 and fulvestrant share a similar gene regulation profile except for the variation of regulation potency. Further studies indicate that ERD-148 degrades the ERα in fulvestrant-resistant cells. CONCLUSION: PROTAC ER degrader has a different mechanism of action compared to SERD which may be used in treating fulvestrant-resistant cancers.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/metabolismo , Fulvestrant/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
9.
Biochem Soc Trans ; 52(3): 1191-1197, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864421

RESUMEN

Molecular glue (MG) degraders include plant hormones and therapeutic drugs and have become a hot topic in drug discovery. Unlike bivalent proteolysis targeting chimeras (PROTACs), monovalent MGs can trigger the degradation of non-ligandable proteins by enhancing their interaction with E3 ubiquitin ligases. Here, I analyze the characteristics of natural MG degraders, contrast them with synthetic ones, and provide a rationale for optimizing MGs. In natural MG-based degradation systems, a stable complex is only formed when all three partners (MG, E3 ligase, and substrate) are present, while the affinities between any two components are either weak or undetectable. After the substrate is degraded, the MG will dissociate from its receptor (E3 ligase) due to their low micromolar affinity. In contrast, synthetic MGs, such as immunomodulatory drugs (IMiDs) and CR8, are potent inhibitors of their receptors by blocking the CRBN-native substrate interaction or by occupying the active site of CDK12. Inspired by nature, the affinities of IMiDs to CRBN can be reduced to make those compounds degraders without the E3-inhibitory activity, therefore, minimizing the interference with the physiological substrates of CRBN. Similarly, the CR8-CDK interaction can be weakened to uncouple the degrader function from the kinase inhibition. To mimic natural examples and reduce side effects, future development of MG degraders that lack the inhibitory activity should be considered.


Asunto(s)
Proteolisis , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Descubrimiento de Drogas , Reguladores del Crecimiento de las Plantas/metabolismo , Animales
10.
BMC Cancer ; 24(1): 504, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644473

RESUMEN

BACKGROUND: Leptomeningeal metastasis (LM) of small cell lung cancer (SCLC) is a highly detrimental occurrence associated with severe neurological disorders, lacking effective treatment currently. Proteolysis-targeting chimeric molecules (PROTACs) may provide new therapeutic avenues for treatment of podophyllotoxin derivatives-resistant SCLC with LM, warranting further exploration. METHODS: The SCLC cell line H128 expressing luciferase were mutated by MNNG to generate H128-Mut cell line. After subcutaneous inoculation of H128-Mut into nude mice, H128-LM and H128-BPM (brain parenchymal metastasis) cell lines were primarily cultured from LM and BPM tissues individually, and employed to in vitro drug testing. The SCLC-LM mouse model was established by inoculating H128-LM into nude mice via carotid artery and subjected to in vivo drug testing. RNA-seq and immunoblotting were conducted to uncover the molecular targets for LM. RESULTS: The SCLC-LM mouse model was successfully established, confirmed by in vivo live imaging and histological examination. The upregulated genes included EZH2, SLC44A4, VEGFA, etc. in both BPM and LM cells, while SLC44A4 was particularly upregulated in LM cells. When combined with PROTAC EZH2 degrader-1, the drug sensitivity of cisplatin, etoposide (VP16), and teniposide (VM26) for H128-LM was significantly increased in vitro. The in vivo drug trials with SCLC-LM mouse model demonstrated that PROTAC EZH2 degrader-1 plus VM26 or cisplatin/ VP16 inhibited H128-LM tumour significantly compared to VM26 or cisplatin/ VP16 alone (P < 0.01). CONCLUSION: The SCLC-LM model effectively simulates the pathophysiological process of SCLC metastasis to the leptomeninges. PROTAC EZH2 degrader-1 overcomes chemoresistance in SCLC, suggesting its potential therapeutic value for SCLC LM.


Asunto(s)
Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias Pulmonares , Ratones Desnudos , Podofilotoxina , Carcinoma Pulmonar de Células Pequeñas , Animales , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Ratones , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Podofilotoxina/farmacología , Podofilotoxina/análogos & derivados , Podofilotoxina/uso terapéutico , Línea Celular Tumoral , Carcinomatosis Meníngea/tratamiento farmacológico , Carcinomatosis Meníngea/secundario , Ensayos Antitumor por Modelo de Xenoinjerto , Proteolisis/efectos de los fármacos
11.
Bioorg Med Chem ; 103: 117661, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489998

RESUMEN

Son of sevenless homolog 1 (SOS1) plays a pivotal role as a molecular switch in the conversion of GDP-bound inactive KRAS to its active GTP-bound form, making SOS1 a promising therapeutic target for KRAS-driven cancers. While the most advanced SOS1 inhibitor has processed to phase I clinical trial, the exploration of novel SOS1 targeting strategies with distinct modes of action remains required. By employing proteolysis targeting chimera (PROTAC) technology, we obtained a series of new SOS1 degraders. The representative compound LHF418 potently induced SOS1 degradation with a DC50 value of 209.4 nM and a Dmax value of over 80 %. Mechanistic studies have illuminated that compound LHF418 induced the formation of ternary complex involving SOS1-PROTAC-cereblon (CRBN) and triggered SOS1 protein degradation in a CRBN- and proteasome-dependent manner. In addition, compound LHF418 effectively inhibited KRAS-RAF-ERK signalling, leading to the suppression of colony formation in KRAS-driven cancer cells. Overall, compound LHF418 represents a new lead compound in the developing novel and potent therapy for the treatment of KRAS-driven cancers.


Asunto(s)
Quimera Dirigida a la Proteólisis , Proteínas Proto-Oncogénicas p21(ras) , Línea Celular Tumoral , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
12.
Bioorg Med Chem ; 112: 117896, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39214014

RESUMEN

Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, 19s, can significantly degrade PAK1 protein at concentrations as low as 0.1 µM, and achieves potent anti-proliferative activity with an IC50 value of 1.27 µM in MDA-MB-231 cells. Additionally, 19s exhibits potent anti-migration activity in vitro and induces rapid tumor regression in vivo. Collectively, these findings document that 19s is a potent and novel PAK1 degrader with promising potential for TNBC treatment.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Neoplasias de la Mama Triple Negativas , Quinasas p21 Activadas , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/metabolismo , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Femenino , Relación Estructura-Actividad , Animales , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Dosis-Respuesta a Droga , Ratones , Movimiento Celular/efectos de los fármacos , Ratones Desnudos
13.
Bioorg Med Chem ; 111: 117867, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121678

RESUMEN

Currently, antibody drugs targeting programmed cell death ligand 1 (PD-L1) have achieved promising results in cancer treatment, while the development of small-molecule drugs lags behind. In this study, we designed and synthesized a series of PD-L1-degrading agents based on the PROTAC design principle, utilizing the PD-L1 inhibitor A56. Through systematic screening of ligands and linkers and investigating the structure-activity relationship of the degraders, we identified two highly active compounds, 9i and 9j. These compounds enhance levels of CD4+, CD8+, granzyme B, and perforin, demonstrating significant in vivo antitumor effects with a tumor growth inhibition (TGI) of up to 57.35 %. Both compounds facilitate the internalization of PD-L1 from the cell surface and promote its degradation through proteasomal and lysosomal pathways, while also maintaining inhibition of the PD-1/PD-L1 interaction. In summary, our findings provide a novel strategy and mechanism for developing biphenyl-based PROTAC antitumor drugs targeting and degrading PD-L1.


Asunto(s)
Antineoplásicos , Antígeno B7-H1 , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptor de Muerte Celular Programada 1 , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Estructura Molecular , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Quimera Dirigida a la Proteólisis
14.
Bioorg Med Chem ; 105: 117718, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621319

RESUMEN

Targeted protein degradation (TPD) has recently emerged as an exciting new drug modality. However, the strategy of developing small molecule-based protein degraders has evolved over the past two decades and has now established molecular tags that are already in clinical use, as well as chimeric molecules, PROteolysis TArgeting Chimeras (PROTACs), based mainly on ligand systems developed for the two E3 ligases CRBN and VHL. The large size of the human E3 ligase family suggests that PROTACs can be developed by targeting a large diversity of E3 ligases, some of which have restricted expression patterns with the potential to design disease- or tissue-specific degraders. Indeed, many new E3 ligands have been published recently, confirming the druggability of E3 ligases. This review summarises recent data on E3 ligases and highlights the challenges in developing these molecules into efficient PROTACs rivalling the established degrader systems.


Asunto(s)
Proteolisis , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Ligandos , Proteolisis/efectos de los fármacos , Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Estructura Molecular
15.
Bioorg Chem ; 146: 107309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537338

RESUMEN

Prostate Cancer (PCa) easily progress to metastatic Castration-Resistant Prostate Cancer (mCRPC) that remains a significant cause of cancer-related death. Androgen receptor (AR)-dependent transcription is a major driver of prostate tumor cell proliferation. Proteolysis-targeting chimaera (PROTAC) technology based on Hydrophobic Tagging (HyT) represents an intriguing strategy to regulate the function of therapeutically androgen receptor proteins. In the present study, we have designed, synthesized, and evaluated a series of PROTAC-HyT AR degraders using AR antagonists, RU59063, which were connected with adamantane-based hydrophobic moieties by different alkyl chains. Compound D-4-6 exhibited significant AR protein degradation activity, with a degradation rate of 57 % at 5 µM and nearly 90 % at 20 µM in 24 h, and inhibited the proliferation of LNCaP cells significantly with an IC50 value of 4.77 ± 0.26 µM in a time-concentration-dependent manner. In conclusion, the present study lays the foundation for the development of a completely new class of therapeutic agents for the treatment of mCRPC, and further design and synthesis of AR-targeting degraders are currently in progress for better degradation rate.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/química , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Línea Celular Tumoral , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Proteolisis
16.
Bioorg Chem ; 149: 107477, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820938

RESUMEN

Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis targeting chimeras (PROTACs) emerge as a promising approach to overcome the limitations of FLT3 inhibitors, while the development of orally bioavailable FLT3-PROTACs faces great challenges. Here, we report the rational design and evaluation of a series of Gilteritinib-based FLT3-PROTACs. Among them, B3-2 exhibited the strongest antiproliferative activity against FLT3-ITD mutant AML cells, and significantly induced FLT3-ITD protein degradation. Mechanistic investigations demonstrated that B3-2 induced FLT3-ITD degradation in a ubiquitin-proteasome-dependent manner. More importantly, B3-2 exhibited an oral bioavailability of 5.65%, and oral administration of B3-2 showed good antitumor activity in MV-4-11 xenograft models. Furthermore, B3-2 showed strong antiproliferative activity against FLT3 resistant mutations, highlighting its potential in overcoming drug resistance.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Pirazinas , Tirosina Quinasa 3 Similar a fms , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Pirazinas/química , Pirazinas/farmacología , Pirazinas/síntesis química , Proliferación Celular/efectos de los fármacos , Animales , Relación Estructura-Actividad , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Ratones , Descubrimiento de Drogas , Tiofenos/química , Tiofenos/farmacología , Tiofenos/síntesis química , Proteolisis/efectos de los fármacos , Compuestos de Anilina/química , Compuestos de Anilina/farmacología , Compuestos de Anilina/síntesis química , Línea Celular Tumoral , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo
17.
Bioorg Chem ; 148: 107439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754310

RESUMEN

PRMT6 is a member of the protein arginine methyltransferase family, which participates in a variety of physical processes and plays an important role in the occurrence and development of tumors. Using small molecules to design and synthesize targeted protein degraders is a new strategy for drug development. Here, we report the first-in-class degrader SKLB-0124 for PRMT6 based on the hydrophobic tagging (HyT) method.Importantly, SKLB-0124 induced proteasome dependent degradation of PRMT6 and significantly inhibited the proliferation of HCC827 and MDA-MB-435 cells. Moreover, SKLB-0124 effectively induced apoptosis and cell cycle arrest in these two cell lines. Our data clarified that SKLB-0124 is a promising selective PRMT6 degrader for cancer therapy which is worthy of further evaluation.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Relación Dosis-Respuesta a Droga , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Proteínas Nucleares
18.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792088

RESUMEN

Interleukin receptor-associated kinase (IRAK) proteins are pivotal in interleukin-1 and Toll-like receptor-mediated signaling pathways. They play essential roles in innate immunity and inflammation. This review analyzes and discusses the physiological functions of IRAK1 and its associated diseases. IRAK1 is involved in a wide range of diseases such as dry eye, which highlights its potential as a therapeutic target under various conditions. Various IRAK1 inhibitors, including Pacritinib and Rosoxacin, show therapeutic potential against malignancies and inflammatory diseases. The covalent IRAK1 inhibitor JH-X-119-01 shows promise in B-cell lymphomas, emphasizing the significance of covalent bonds in its activity. Additionally, the emergence of selective IRAK1 degraders, such as JNJ-101, provides a novel strategy by targeting the scaffolding function of IRAK1. Thus, the evolving landscape of IRAK1-targeted approaches provides promising avenues for increasingly safe and effective therapeutic interventions for various diseases.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
19.
Angew Chem Int Ed Engl ; 63(17): e202318568, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38433368

RESUMEN

ATR has emerged as a promising target for anti-cancer drug development. Several potent ATR inhibitors are currently undergoing various stages of clinical trials, but none have yet received FDA approval due to unclear regulatory mechanisms. In this study, we discovered a potent and selective ATR degrader. Its kinase-independent regulatory functions in acute myeloid leukemia (AML) cells were elucidated using this proteolysis-targeting chimera (PROTAC) molecule as a probe. The ATR degrader, 8 i, exhibited significantly different cellular phenotypes compared to the ATR kinase inhibitor 1. Mechanistic studies revealed that ATR deletion led to breakdown in the nuclear envelope, causing genome instability and extensive DNA damage. This would increase the expression of p53 and triggered immediately p53-mediated apoptosis signaling pathway, which was earlier and more effective than ATR kinase inhibition. Based on these findings, the in vivo anti-proliferative effects of ATR degrader 8 i were assessed using xenograft models. The degrader significantly inhibited the growth of AML cells in vivo, unlike the ATR inhibitor. These results suggest that the marked anti-AML activity is regulated by the kinase-independent functions of the ATR protein. Consequently, developing potent and selective ATR degraders could be a promising strategy for treating AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/uso terapéutico , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteolisis , Proteína p53 Supresora de Tumor/metabolismo
20.
J Biol Chem ; 298(4): 101653, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101445

RESUMEN

PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."


Asunto(s)
Modelos Moleculares , Ubiquitina-Proteína Ligasas , Ubiquitinación , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA