RESUMEN
BACKGROUND: This study investigates the impact of diquat toxicity levels on in-hospital mortality rates among patients with acute diquat poisoning. It aims to clarify the relationship between diquat toxicity scores and the likelihood of death during hospitalization. METHODS: A retrospective cohort study was conducted on 98 individuals with acute diquat poisoning. Data on post-ingestion time, initial diquat plasma concentration, and clinical outcomes were systematically collected for all participants. The toxicity-index of diquat was calculated based on post-ingestion time and initial diquat plasma concentration. Logistic regression analysis was utilized to assess the association between the toxicity-index of diquat and in-hospital mortality rates, adjusting for potential confounding variables such as age, comorbidities, and treatment interventions. RESULTS: The study found that the overall prevalence of in-hospital mortality was 34.7%, with 58.2% in males. The multivariable-adjusted regression coefficient for in-hospital mortality associated with the toxicity-index was 1.09, with a 95% confidence interval (CI) of 1.01-1.17. Subsequent exploratory subgroup analysis indicated that there were no significant interactions (all p values for interaction were >0.05). CONCLUSIONS: The study found that higher diquat toxicity-index values correlate with increased in-hospital mortality in acute diquat poisoning cases, indicating that the toxicity-index could be a useful biomarker for assessing mortality risk.
The toxicity-index of diquat plays a pivotal role in the identification, management, and prognostic prediction of acute diquat poisoning; however, its specific predictive value warrants further investigation.The toxicity-index of diquat serves as a more precise biomarker for differentiating between low-risk and high-risk categories.In comparison to low-risk patients with acute diquat poisoning, the toxicity-index of diquat in high-risk patients were significantly elevated.
RESUMEN
Diquat (DQ), paraquat (PQ), glufosinate (GLU), and glyphosate (GLYP) are commonly used herbicides that have been confirmed to be toxic to humans. Rapid and accurate measurements of these toxicants in clinical practice are beneficial for the correct diagnosis and timely treatment of herbicide-poisoned patients. The present study aimed to establish an efficient, convenient, and reliable method to achieve the simultaneous quantification of DQ, PQ, GLU, and GLYP in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS) without using derivatization or ion-pairing reagents. DQ, PQ, GLU, and GLYP were extracted by the rapid protein precipitation and liquid-liquid extraction method and then separated and detected by LC-MS/MS. Subsequently, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, extraction recovery, matrix effect, dilution integrity, and stability were evaluated to validate the method based on the FDA criteria. Finally, the validated method was applied to real plasma samples collected from 166 Chinese patients with herbicide poisoning. The results showed satisfactory linearity with low LOD (1 ng/mL for DQ and PQ, 5 ng/mL for GLU, and 10 ng/mL for GLYP, respectively) and low LOQ (5 ng/mL for DQ and PQ, 25 ng/mL for GLU and GLYP, respectively). In addition, the precision, accuracy, extraction recovery, and stability of the method were acceptable. The matrix effect was not observed in the analyzed samples. Moreover, the developed method was successfully applied to determine the target compounds in real plasma samples. These data provided reliable evidence for the application of this LC-MS/MS method for clinical poisoning detection.
Asunto(s)
Aminobutiratos , Diquat , Glicina , Glifosato , Herbicidas , Límite de Detección , Paraquat , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Glicina/análogos & derivados , Glicina/sangre , Aminobutiratos/sangre , Diquat/sangre , Diquat/envenenamiento , Paraquat/sangre , Paraquat/envenenamiento , Herbicidas/sangre , Herbicidas/envenenamiento , Cromatografía Liquida/métodos , Reproducibilidad de los ResultadosRESUMEN
Coenzyme Q10 (CoQ10) plays an important role in improving mitochondrial function and has many beneficial effects on the kidney. However, whether CoQ10 protects against diquat (DQ)-induced acute kidney injury (AKI) remains unclear. In this study, we investigated the protective effects and mechanism of action of CoQ10 against DQ-induced AKI. Institute of Cancer Research (ICR) mice were intraperitoneally injected with DQ to induce AKI. The expression levels of serum creatinine (Cr), urea, and kidney injury molecule-1 (KIM-1) increased, those of aquaporin 1 (AQP-1) decreased, and those of mitochondrial reactive oxygen species (ROS) increased with increased depolarization of mitochondrial membranes and mitochondrial rupture. In contrast, treatment with CoQ10 significantly improved DQ-induced AKI. CoQ10 treatment reduced serum Cr, urea, and KIM-1 contents, increased the AQP-1 expression, and reduced ROS contents in mice with DQ poisoning. Our results suggest that AKI caused by DQ poisoning may be related to the disruption of mitochondrial homeostasis and that CoQ10 treatment protects against AKI caused by DQ poisoning by improving mitochondrial kinetic homeostasis. Thus, CoQ10 represents a new therapeutic option for the prevention and treatment of AKI caused by DQ poisoning.
Asunto(s)
Lesión Renal Aguda , Diquat , Túbulos Renales Proximales , Mitocondrias , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/patología , Masculino , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Diquat/toxicidad , Ratones Endogámicos ICR , Especies Reactivas de Oxígeno/metabolismoRESUMEN
A 54-year-old woman in good health was admitted to our hospital with diquat poisoning. The patient drank an unknown dose of diquat, and acute kidney injury developed early. However, there were no obvious pulmonary abnormalities and no signs of central nervous system toxicity in the early stage. The woman underwent active treatment, which resulted in a significant decrease in blood diquat levels, but her lung condition progressively worsened and neurological symptoms developed. Fortunately, the patient survived after intensive hemoperfusion combined with continuous renal replacement therapy (CRRT), intracranial pressure reduction, and anti-infective treatment. This case report highlights the importance of being aware of the development of delayed pulmonary symptoms and neurologic complications when caring for patients poisoned with diquat, even in those with low diquat blood concentrations. Interestingly, we also detected the concentration of diquat in the cerebrospinal fluid (CSF) of patients with diquat poisoning, and found that the rate of decrease of diquat concentration in the CSF was considerably slower than that in the blood.Notably, a specific correlation was observed between the concentration of diquat in the CSF, rather than in the blood, and both the intracranial pressure (ICP) and the severity of cerebral edema in this patient.
Asunto(s)
Terapia de Reemplazo Renal Continuo , Hemoperfusión , Intoxicación , Humanos , Femenino , Persona de Mediana Edad , Diquat , Sistema Nervioso Central , Pulmón , Intoxicación/terapiaRESUMEN
Diquat (DQ) is a widely utilized nonselective herbicide that is primarily used to control a wide range of weeds and crop residues. It also has significant environmental implications. DQ exposure can cause severe damage to the central nervous system (CNS), a critical symptom of acute poisoning that endangers patients. Despite its severity, the underlying mechanisms of DQ-induced toxic encephalopathy remain unclear, hindering the development of precise treatments. Our research demonstrated that acute DQ exposure in mice significantly increases oxidative stress and triggers neuroinflammation in the hippocampus. Furthermore, in vitro findings indicate that the detrimental effects of DQ are mediated by its disruption of autophagic processes, leading to exacerbated neural damage. DQ initially promotes autophagy in BV2 microglia for self-protection against oxidative stress and inflammation. However, this process is subsequently blocked, intensifying neural damage. Crucially, our results show that the activation of autophagy can reverse these adverse effects. This study not only sheds light on the intricate mechanisms of DQ neurotoxicity but also provides potential therapeutic targets for mitigating DQ-induced toxic encephalopathy.
RESUMEN
Diquat (DQ) is a commonly used bipyridine herbicide known for its toxic properties and adverse effects on individuals. However, the mechanism underlying DQ-induced damage remain elusive. Our research aimed to uncover the regulatory network involved in DQ-induced damage. We analyzed publicly accessible gene expression patterns and performed research using a DQ-induced damage animal model. The GSE153959 dataset from the Gene Expression Omnibus collection and the animal model of DQ-induced kidney injury were used to identify differentially expressed genes (DEGs). Pathways including the regulation of DNA-templated transcription in response to stress, RNA polymerase II transcription regulator complex and transcription coregulatory activity were shown to be enriched in 21 DEGs. We used least absolute shrinkage and selection operator (LASSO) regression analysis to find possible diagnostic biomarkers for DQ-induced damage. Then, we used an HK-2 cell model to confirm these results. Additionally, we confirmed that 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was the major gene associated with DQ-induced damage using multi-omics screening. The sample validation strongly suggested that HMGCS2 has promise as a diagnostic marker and may provide new targets for therapy in the context of DQ-induced damage.
Asunto(s)
Diquat , Hidroximetilglutaril-CoA Sintasa , Animales , Hidroximetilglutaril-CoA Sintasa/genética , Diquat/toxicidad , Herbicidas/toxicidad , Humanos , Línea Celular , Masculino , Riñón/efectos de los fármacos , Biomarcadores , RatasRESUMEN
Diquat dibromide (DQ) is a globally used herbicide in agriculture, and its overuse poses an important public health issue, including male reproductive toxicity in mammals. However, the effects and molecular mechanisms of DQ on testes are limited. In vivo experiments, mice were intraperitoneally injected with 8 or 10â¯mg/kg/ day of DQ for 28 days. It has been found that heme oxygenase-1 (HO-1) mediates DQ-induced ferroptosis in mouse spermatogonia, thereby damaging testicular development and spermatogenesis. Histopathologically, we found that DQ exposure caused seminiferous tubule disorders, reduced germ cells, and increased sperm malformation, in mice. Reactive oxygen species (ROS) staining of frozen section and transmission electron microscopy (TEM) displayed DQ promoted ROS generation and mitochondrial morphology alterations in mouse testes, suggesting that DQ treatment induced testicular oxidative stress. Subsequent RNA-sequencing further showed that DQ treatment might trigger ferroptosis pathway, attributed to disturbed glutathione metabolism and iron homeostasis in spermatogonia cells in vitro. Consistently, results of western blotting, measurements of MDA and ferrous iron, and ROS staining confirmed that DQ increased oxidative stress and lipid peroxidation, and accelerated ferrous iron accumulation both in vitro and in vivo. Moreover, inhibition of ferroptosis by deferoxamine (DFO) markedly ameliorated DQ-induced cell death and dysfunction. By RNA-sequencing, we found that the expression of HO-1 was significantly upregulated in DQ-treated spermatogonia, while ZnPP (a specific inhibitor of HO-1) blocked spermatogonia ferroptosis by balancing intracellular iron homeostasis. In mice, administration of the ferroptosis inhibitor ferrostatin-1 effectively restored the increase of HO-1 levels in the spermatogonia, prevented spermatogonia death, and alleviated the spermatogenesis disorders induced by DQ. Overall, these findings suggest that HO-1 mediates DQ-induced spermatogonia ferroptosis in mouse testes, and targeting HO-1 may be an effective protective strategy against male reproductive disorders induced by pesticides in agriculture.
Asunto(s)
Diquat , Ferroptosis , Hemo-Oxigenasa 1 , Herbicidas , Especies Reactivas de Oxígeno , Espermatogonias , Testículo , Animales , Masculino , Ferroptosis/efectos de los fármacos , Ratones , Espermatogonias/efectos de los fármacos , Espermatogonias/patología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Testículo/efectos de los fármacos , Testículo/patología , Diquat/toxicidad , Herbicidas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Proteínas de la MembranaRESUMEN
Diquat (DQ) poisoning has garnered attention in recent years, primarily due to the rising incidence of cases worldwide, coupled with the absence of a viable antidote for its treatment. Despite the fact that diquat monopyridone (DQ-M) has been identified as a significant metabolite of DQ, the enzyme responsible for its formation remains unknown. In this study, we have identified aldehyde oxidase (AOX) as a vital enzyme involved in DQ oxidative metabolism. The metabolism of DQ to DQ-M was significantly inhibited by AOX inhibitors including raloxifene and hydralazine. The source of oxygen incorporated into DQ-M was proved to be from water through a H218O incubation experiment which further corroborated DQ-M formation via AOX metabolism. The product of DQ-M in vitro generated by fresh rat tissues co-incubation was consistent with its AOX expression. The result of the molecular docking analysis of DQ and AOX protein showed that DQ is capable of binding to AOX. Furthermore, the cytotoxicity of DQ was significantly higher than DQ-M at the same concentration tested in six cell types. This work is the first to uncover the involvement of aldehyde oxidase, a non-cytochrome P450 enzyme, in the oxidative metabolic pathway of diquat, thus providing a potential target for the development of detoxification treatment.
Asunto(s)
Aldehído Oxidasa , Diquat , Ratas , Animales , Diquat/farmacología , Aldehído Oxidasa/química , Aldehído Oxidasa/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Redes y Vías Metabólicas , Sistema Enzimático del Citocromo P-450/metabolismoRESUMEN
Many factors induced by environmental toxicants have made oxidative stress a risk factor for the intestinal barrier injury and growth restriction, which is serious health threat for human and livestock and induces significant economic loss. It is well-known that diquat-induced oxidative stress is implicated in the intestinal barrier injury. Although some studies have shown that mitochondria are the primary target organelle of diquat, the underlying mechanism remains incompletely understood. Recently, mitochondria-associated endoplasmic reticulum membranes (MAMs) have aroused increasing concerns among scholars, which participate in mitochondrial dynamics and signal transduction. In this study, we investigated whether MAMs involved in intestinal barrier injury and mitochondrial dysfunction induced by diquat-induced oxidative stress in piglets and porcine intestinal epithelial cells (IPEC-J2 cells). The results showed that diquat induced growth restriction and impaired intestinal barrier. The mitochondrial reactive oxygen species (ROS) was increased and mitochondrial membrane potential was decreased following diquat exposure. The ultrastructure of mitochondria and MAMs was also disturbed. Meanwhile, diquat upregulated endoplasmic reticulum stress marker protein and activated PERK pathway. Furthermore, loosening MAMs alleviated intestinal barrier injury, decrease of antioxidant enzyme activity and mitochondrial dysfunction induced by diquat in IPEC-J2 cells, while tightening MAMs exacerbated diquat-induced mitochondrial dysfunction. These results suggested that MAMs may be associated with the intestinal barrier injury and mitochondrial dysfunction induced by diquat in the jejunum of piglets.
Asunto(s)
Diquat , Retículo Endoplásmico , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Diquat/toxicidad , Estrés Oxidativo/efectos de los fármacos , Porcinos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Línea Celular , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Herbicidas/toxicidad , Células Epiteliales/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/patologíaRESUMEN
OBJECTIVE: To evaluate the clinical efficacy and safety of fractionated plasma separation and adsorption combined with continuous veno-venous hemofiltration (FPSA-CVVH) treatment in patients with acute bipyridine herbicide poisoning. METHODS: A retrospective analysis of 18 patients with acute bipyridine herbicide poisoning was conducted, of which 9 patients were poisoned by diquat and 9 patients by paraquat. All patients underwent FPSA-CVVH treatment. The serum cytokine levels in pesticide-poisoned patients were assessed. The efficacy of FPSA-CVVH in eliminating cytokines, the 90-d survival rate of poisoned patients, and adverse reactions to the treatment were observed. RESULTS: Fourteen patients (77.8%) had acute kidney injuries and 10 (55.6%) had acute liver injuries. The serum cytokine levels of high mobility group protein B-1 (HMGB-1), interleukin-6 (IL-6), IL-8, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1ß (MIP-1ß) were significantly elevated. A total of 41 FPSA-CVVH treatment sessions were administered. After a single 8-h FPSA-CVVH treatment, the decreases in HMGB-1, IL-6, IL-8, IP-10, MCP-1, and MIP-1ß were 66.0%, 63.5%, 73.3%, 63.7%, 53.9%, and 54.1%, respectively. During FPSA-CVVH treatment, one patient required a filter change due to coagulation in the plasma component separator, and one experienced a bleeding adverse reaction. The 90-d patient survival rate was 50%, with 4 patients with diquat poisoning and 5 patients with paraquat poisoning, and both liver and kidney functions were restored to normal. CONCLUSION: Cytokine storms may play a significant role in the progression of multiorgan dysfunction in patients with acute bipyridine herbicide poisoning. FPSA-CVVH can effectively reduce cytokine levels, increase the survival rate of patients with acute bipyridine herbicide poisoning, and decrease the incidence of adverse events.
Asunto(s)
Lesión Renal Aguda , Terapia de Reemplazo Renal Continuo , Herbicidas , Humanos , Masculino , Femenino , Herbicidas/envenenamiento , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Lesión Renal Aguda/terapia , Lesión Renal Aguda/inducido químicamente , Citocinas/sangre , Paraquat/envenenamiento , Diquat/envenenamiento , Adulto Joven , Anciano , Hemofiltración/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/terapiaRESUMEN
BACKGROUND: To explore the predictive value of procalcitonin (PCT) within 24 h after poisoning for prognosis of acute diquat poisoning. METHODS: This retrospective study included acute diquat poisoning patients in the Nanyang City Hospital between May 2017 and July 2021. RESULTS: Among the 45 patients included, 27 survived. The maximum PCT value within 24 h after poisoning was significantly higher in the non-survival patients [9.65 (2.63, 22.77) vs. 0.15 (0.10, 0.50) µg/mL, P < 0.001] compared to the survival patients. The area under the ROC curve (AUC) indicated that the maximum PCT value within 24 h had a good predictive value (AUC = 0.905, 95% CI: 0.808-1.000) compared to ingested quantity (AUC = 0.879, 95% CI: 0.776-0.981), serum creatinine (AUC = 0.776, 95% CI: 0.640-0.912), or APACHE II score (AUC = 0.778, 95% CI: 0.631-0.925). The predictive value of maximum PCT value within 24 h was comparable with blood lactate (AUC = 0.904, 95%CI: 0.807-1.000). CONCLUSIONS: The maximum PCT value within 24 h after poisoning might be a good predictor for the prognosis of patients with acute diquat poisoning.
Asunto(s)
Diquat , Polipéptido alfa Relacionado con Calcitonina , Humanos , Estudios Retrospectivos , Pronóstico , Área Bajo la CurvaRESUMEN
BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.
Asunto(s)
Antioxidantes , Melatonina , Humanos , Animales , Porcinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Diquat/efectos adversos , Melatonina/farmacología , Suplementos Dietéticos , Trastornos del CrecimientoRESUMEN
Diquat (DQ) is a non-selective, foliage-applied herbicide that is known to cause liver and kidney damage, while the impact on the lungs is relatively mild. Current domestic and international reports on diquat poisoning primarily focus on liver and kidney injuries, with limited documentation of cases leading to acute respiratory distress syndrome (ARDS) and lung damage. This paper presents a retrospective analysis of two documented cases of diquat poisoning, both exhibiting ARDS. In both cases, the condition rapidly progressed upon the onset of ARDS despite aggressive treatment, ultimately resulting in the death of the patients.
Asunto(s)
Diquat , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/inducido químicamente , Masculino , Diquat/envenenamiento , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Herbicidas/envenenamiento , FemeninoRESUMEN
A series of new organic donor-π-acceptor dyes incorporating a diquat moiety as a novel electron-acceptor unit have been synthesized and characterized. The analytical data were supported by DFT calculations. These dyes were explored in the aerobic thiocyanation of indoles and pyrroles. Here they showed a high photocatalytic activity under visible light, giving isolated yields of up to 97 %. In addition, the photocatalytic activity of standalone diquat and methyl viologen through formation of an electron donor acceptor complex is presented.
RESUMEN
Herbicides are used in agriculture to control harmful crop weeds, prevent algae proliferation, and enhance macrophyte growth. Herbicide contamination of water bodies might exert toxic effects on fish in different development stages. Sperm, embryos, and adults of Astyanax altiparanae were used as a model to examine the detrimental effects of the following herbicide formulations: Roundup Transorb® (glyphosate), Arsenal® NA (imazapyr), and Reglone® (diquat). The lethal concentration 50 (LC50) values for adults using glyphosate and imazapyr were 3.14 mg/L and 4.59 mg/L, respectively, while the LC50 was higher than 28 mg/L for diquat. For the initial stages of embryo development, LC50 values were 16.52 mg/L glyphosate, 9.33 mg/L imazapyr, and 1084 mg/L diquat. Inhibition of sperm motility was noted at 252 mg/L glyphosate, 137 mg/L imazapyr, and 11,300 mg/L diquat, with an average sperm viability of 12.5%, 73.2%, and 89.3%, respectively, compared to 87.5% detected to control. A. altiparanae exhibited different sensitivities to the herbicide formulations investigated in the developmental stages evaluated. Roundup Transorb® exposure was more toxic for adults, while Arsenal® NA was most harmful for early embryonic development and inhibited sperm motility. Reglone® demonstrated low toxicity for A. altiparanae compared to Roundup Transorb® and Arsenal® NA. A. altiparanae may be considered an emerging fish model for toxicological studies for the neotropical region due to its wide distribution and biological characteristics.
Asunto(s)
Characidae , Characiformes , Herbicidas , Contaminantes Químicos del Agua , Animales , Masculino , Herbicidas/toxicidad , Diquat , Motilidad Espermática , Semen , Contaminantes Químicos del Agua/toxicidadRESUMEN
The present study aimed to assess the impact of grape seed extract (GSE), onion peel extract (OPE), and rosemary extract (ROE) on Diquat-induced growth restriction and oxidative stress in Lohmann chicks. A total of 200 chicks were randomly assigned to 5 diets: the positive control (PC) group, the negative control (NC) group, GSE group, OPE group, and ROE group. During the first 7 d of trial, compared with NC and PC groups, the GSE group enhanced average daily feed intake (ADFI). From day 8-21, diquat injection resulted in reduced growth performance, increased platelet volume distribution width (PWD), malondialdehyde (MDA) concentration, and activities of alanine aminotransferase (ALT) in chick serum; it also decreased total protein (TP), albumin (ALB), globulin (GLB) concentration, activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) in chick serum; furthermore, it increased MDA concentration while decreasing GST activities in liver. The NC group exhibited lower average daily gain (ADG) than other groups. Compared with NC group, GSE group reduced ALT activities, MDA levels, and red cell distribution width (RDW), and PDW concentration; it also increased SOD, GST activities. The ROE group lowered ALT activities and MDA concentration. The OPE group decreased ALT activities, and MDA levels, RDW, and PDW concentration, and increased SOD activities of chicks. These results suggest that supplementing antioxidants in diets alleviated oxidative stress in chicks challenged by improving antioxidant capacity and liver function.
Asunto(s)
Extracto de Semillas de Uva , Rosmarinus , Animales , Extracto de Semillas de Uva/farmacología , Extracto de Semillas de Uva/metabolismo , Diquat/toxicidad , Diquat/metabolismo , Cebollas/metabolismo , Rosmarinus/metabolismo , Antioxidantes/farmacología , Dieta/veterinaria , Estrés Oxidativo , Hígado/metabolismo , Suplementos Dietéticos , Superóxido Dismutasa/metabolismoRESUMEN
Objectives: Diquat has replaced paraquat in agricultural areas as a herbicide but has led to extensive poisoning. Unlike paraquat, which targets the lungs, diquat primarily targets the kidneys. Autopsies and animal experiments suggest that interstitial kidney damage is the most critical renal lesion. Diquat is a nonselective chemical widely used for terrestrial and aquatic plants after the ban on paraquat. Although diquat is known to affect the kidneys mainly, no study has reported renal biopsy in patients with diquat poisoning.Methods: We investigated the histopathologic feature in a young man with diquat poisoning who developed acute kidney injury by renal biopsy.Results: Autopsy and animal experiments suggest that interstitial kidney inflammation is the most critical renal lesion. Surprisingly, our results showed that lipid degeneration and acute tubular injury with limited interstitial inflammation were the dominant histologic findings in this patient. Conclusions: Based on a renal biopsy, this was the first study describing the characteristics of the kidney affected by diquat poisoning. Our findings might provide information for managing patients who develop AKI due to diquat poisoning.
Asunto(s)
Lesión Renal Aguda , Herbicidas , Masculino , Animales , Humanos , Diquat , Paraquat , Riñón , Lesión Renal Aguda/inducido químicamente , InflamaciónRESUMEN
Paraquat (PQ) and diquat (DQ), some of the most widely used herbicides in the world, both present a high mortality index after intentional exposure. In this paper, a fluorescence sensing method for PQ and DQ, based on host-guest molecular recognition, is proposed. Calix[6]arene derivatives containing anthracene or naphthalene as pendant fluorophore at their lower rim recognize DQ and PQ in hydroalcoholic solution with a broad linear response range at the µg L-1 level concentration. The linear response ranges were found from 1.0 to 18 µg L-1 with the detection limit of 31 ng L-1 for paraquat, and from 1.0 to 44 µg L-1 with the detection limit of 0.16 µg L-1 for diquat. The recognition process is detected by following the decrease in the fluorescence emission consequent to complexation. The proposed quenching method has been applied to the determination of paraquat in drinking water samples.
Asunto(s)
Diquat , Herbicidas , Paraquat , Fluorescencia , Herbicidas/análisisRESUMEN
Paraquat (PQ) and diquat (DQ) are quaternary ammonium herbicides which have been used worldwide for controlling the growth of weeds on land and in water. However, PQ and DQ are well known to be toxic. PQ is especially toxic to humans. Moreover, there is no specific antidote for PQ poisoning. The main treatment for PQ poisoning is hemoperfusion to reduce the PQ concentration in blood. Therefore, it is essential to be able to detect PQ and DQ concentrations in biological samples. This critical review summarizes the articles published from 2010 to 2022 and can help researchers to understand the development of the sample treatment and analytical methods for the determination of PQ and DQ in various types of biological samples. The sample preparation includes liquid-liquid extraction, solid-phase extraction based on different novel materials, microextration methods, and other methods. Analytical methods for quantifying PQ and DQ, such as different chromatography and spectroscopy methods, electrochemical methods, and immunological methods, are illustrated and compared. We focus on the latest advances in PQ and DQ treatment and the application of new technologies for these analyses. In our opinion, tandem mass spectrometry is a good choice for the determination of PQ and DQ, due to its high sensitivity, high selectivity, and high accuracy. As far as we are concerned, the best LOD of 4 pg/mL for PQ in serum can be obtained.
Asunto(s)
Herbicidas , Paraquat , Humanos , Diquat/análisis , Herbicidas/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Flexible surface-enhanced Raman spectroscopy (SERS) substrates such as paper-based substrates show great potential for rapid detection of residual chemicals on food surfaces. However, controlling the density and distribution of metallic nanoparticles adsorbed on the paper is still challenging. RESULTS: The amount of gold (Au) nanospheres (51 ± 4 nm) attached on the filter paper modified with 3-aminopropyltriethoxysilane (APTES) was tunable, increasing as the level of APTES (2.5-15.0 g kg-1 ) applied for paper modification increased. Moreover, the Au nanospheres were relative evenly distributed on the filter paper modified with 2.5-10.0 g kg-1 of APTES, which resulted in excellent intra- and inter-reproducibility of SERS signals for pesticides including thiram, diquat dibromide, and paraquat dichloride (relative standard deviation = 2.2-10.1%). The modified paper-based substrate could be used to detect as low as 0.05-0.2 mg L-1 of pesticides in standard solutions, and as low as 5-20 ng cm-2 of residual pesticides on apple skins with minimum sample pretreatment. CONCLUSION: This paper-based substrate with tunable feature for the density and distribution of nanoparticles is applicable for rapid SERS detection of residual pesticides in fruits and vegetables. © 2023 Society of Chemical Industry.