Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small ; : e2402131, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152527

RESUMEN

A novel supramolecular photoactuator in the form of a thin film of centimetric size has been developed as an alternative to traditional liquid crystal elastomers (LCE) involving azobenzene (AZO) units or photochromic microcrystals. This thin film is produced through spin coating without the need for alignment or crosslinking. The photoactuator combines a photochromic dithienylethene (DTE) functionalized with ureidopyrimidinone (UPy) units, and a telechelic thermoplastic elastomer, also functionalized with UPy, allowing quadruple hydrogen bonding between the two components. Upon alternating ultraviolet (UV) and visible light exposure, the film exhibits reversible bending and color changes, studied using displacement and absorption tracking setups. For the first time, the photomechanical effect (PME) is quantitatively correlated with photochromism, showing that DTE units drive the movement under both UV (photocyclization) and visible (photoreversion) light. In situ illumination techniques reveal that the PME arises from photoinduced strain within 160 nm UPy-bonded DTE domains, which expand and contract by approximately 50% under UV and visible light, respectively. The semicrystalline nature of the elastomer and a robust supramolecular network connecting both components are critical in converting microscopic photostrain into macroscopic actuation.

2.
Chemistry ; : e202402912, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207028

RESUMEN

The synthetic methodology for the preparation of photoresponsive dioxazaborocanes-containing oligomers is developed. It relies on the transformation of the (diisopropylamino)boryl group (-BH(NiPr2)) into a dioxazaborocane unit in the presence of ß-aminodiols and involves a bis-borylated dithienylethene photochromic unit. The photophysical properties of the obtained oligomers are evaluated as well as their processability for the preparation of spin-coated films. The photomechanical behavior of the resulting films is assessed via displacement tracking profile.

3.
Chemistry ; : e202401562, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140457

RESUMEN

Noninvasive control over the reversible generation of singlet oxygen (1O2) has found the enormous practical implications in the field of biomedical science. However, metal-free pure organic emitters, connected with a photoswitch, capable of generating "on-demand" 1O2 via triplet harvesting remain exceedingly rare; therefore, the utilization of these organic materials for the reversible control of singlet oxygen production remains at its infancy. Herein, an ambient triplet mediated emission in quinoline-dithienylethene (DTE)-core-substituted naphthalene diimide (cNDI) derivative is unveiled via delayed fluorescence. The quinoline-DTE-cNDI triad displayed enhanced photoswitching efficiency via double FRET mechanism. It was found to have direct utilization in controlled photosensitized organic transformations via efficient generation of singlet oxygen (yield ΦΔ~0.55 in DCM and 0.73 in methanol). The designed molecule exhibits a long-lived emission (τ∼1.1 µs) and very small singlet-triplet splitting (ΔEST) of 0.13 eV empowering it to display delayed fluorescence. Comprehensive steady state and time-resolved emission spectroscopy (TRES) analyses along with DFT calculations offer detailed understandings into the excited-state manifolds of organic compound and energy transfer (ET) pathways involved in 1O2 generation.

4.
Chemistry ; 29(62): e202302340, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37580279

RESUMEN

Dithienylethene (DTE)-embedded expanded porphyrins were synthesized and confirmed to be photochemically inactive due to the lowest excited state of the expanded porphyrins. On the other hand, DTE-embedded expanded calixphyrins exhibited reversible photochromism upon UV-irradiation to form colored closed forms, which reverted to colorless open forms upon red-light irradiation. The closed forms were oxidized with DDQ or the air to lock the recorded information by converting to photochemically inactive expanded porphyrins. This was unlocked by reduction with NaBH4 to restore expanded calixphyrins with photochromism activity. These gated photochromic behaviors were demonstrated in PMMA (polymethyl methacrylate) film.

5.
Photochem Photobiol Sci ; 22(11): 2599-2606, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751073

RESUMEN

Obtaining understanding of a photochemical reaction relies on the observation, identification and quantification of the compounds involved. The photochemical properties of the individual components are of particular importance, and their determination, however, is not always trivial. This is also true for the quantitative measure on the ability to absorb light, the extinction coefficient εi if more than one species i is present and two or more species absorb light of the same wavelength. In this work, it is demonstrated how pure component spectra can be obtained with a simple combination of successive and repeated ex situ illumination, UV/Vis and NMR spectroscopy. From the complementary information accessible, the wavelength-dependent extinction coefficients of all species can be calculated yielding the pure component spectra. A comparison with published data shows excellent agreement and thus proves that this approach is highly reliable.

6.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570617

RESUMEN

The first-, second-, and third-order molecular nonlinear optical properties, including two-photon absorption of a series of derivatives, involving two dithienylethene (DTE) groups connected by several molecular linkers (bis(ethylene-1,2-dithiolato)Ni- (NiBDT), naphthalene, quasilinear oligothiophene chains), are investigated by employing density functional theory (DFT). These properties can be efficiently controlled by DTE switches, in connection with light of appropriate frequency. NiBDT, as a linker, is associated with a greater contrast, in comparison to naphthalene, between the first and second hyperpolarizabilities of the "open-open" and the "closed-closed" isomers. This is explained by invoking the low-lying excited states of NiBDT. It is shown that the second hyperpolarizability can be used as an index, which follows the structural changes induced by photochromism. Assuming a Förster type transfer mechanism, the intramolecular excited-state energy transfer (EET) mechanism is studied. Two important parameters related to this are computed: the electronic coupling (VDA) between the donor and acceptor fragments as well as the overlap between the absorption and emission spectra of the donor and acceptor groups. NiBDT as a linker is associated with a low electronic coupling, VDA, value. We found that VDA is affected by molecular geometry. Our results predict that the linker strongly influences the communication between the open-closed DTE groups. The sensitivity of the molecular nonlinear optical properties could assist with identification of molecular isomers.

7.
Chemistry ; 28(7): e202103755, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34870346

RESUMEN

A phenanthrene unit has been functionalized by several methylthiophene units in order to bring it a photochromic behavior. These compounds were characterized by NMR, absorption and emission spectroscopies, theoretical calculations as well as cyclic voltammetry. The association of a phenanthrene group with a photochromic center could open the door to a new generation of organic field-effect transistors.

8.
Chemphyschem ; 23(9): e202200004, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35175689

RESUMEN

The optical and redox properties of a methyl pyridinium appended 1,2-dithienylethene photochromic derivative have been thoroughly investigated. A complex multi-step photo/redox mechanism is proposed for the closed isomer on the ground of spectro-electrochemical and theoretical data. The generated compounds are not stable over the time because of chemical reactions associated to the redox processes and a new dithienylethene derivative incorporating a seven-membered ring has been isolated and characterized.


Asunto(s)
Ciclopentanos , Isomerismo , Oxidación-Reducción
9.
Chemistry ; 26(59): 13359-13362, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32220098

RESUMEN

A pyridinium substituted dithienylethene derivative was used for the first time as an efficient photoreducing agent of two different substrates. This reaction exhibits high catalytic yields due to the continuous regeneration of the initial state of the photochromic molecule.

10.
Chemistry ; 26(6): 1335-1343, 2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-31721322

RESUMEN

Derivatives of 1,2-dithienylethene (DTE) have superb photochromic properties due to an efficient reversible photocyclization reaction of their hexatriene structure and, thus, have application potential in materials for optoelectronics and (multi-responsive) molecular switches. Transition-metal complexes bearing switchable DTE motifs commonly incorporate their coordination site rather distant from the hexatriene system. In this work the redox active ligand 1,2-bis(2,5-dimethylthiophen-3-yl)ethane-1,2-dione is described, which reacts with [V(TMEDA)2 Cl2 ] to give a rare non-oxido vanadium(IV) species 3(M,M/P,P). This blue complex has two bidentate en-diolato ligands which chelate the VIV center and give rise to two five-membered metallacycles with the adjacent hexatriene DTE backbone bearing axial chirality. Upon irradiation with UVA light or prolonged heating in solution, the blue compound 3(M,M/P,P) converts into the purple atropisomer 4(para,M/para,P). Both complexes were isolated and structurally characterized by single-crystal X-ray diffraction analysis (using lab source and synchrotron radiation). The antiparallel configuration (M or P helicity) present in both 3(M,M/P,P) and 4(para,M/para,P) is a prerequisite for (reversible) 6π cyclization reactions. A CW EPR spectroscopic study reveals the metalloradical character for 3(M,M/P,P) and 4(para,M/para,P) and indicates dynamic reversible cyclization of the DTE backbone in complex 3(M,M/P,P) at ambient temperature in solution.

11.
Chemistry ; 25(22): 5757-5767, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30791171

RESUMEN

In order to examine competitive photoisomerization, a series of novel photochromic PtII molecules that contain both dithienylethene (DTE) and B(ppy)Mes2 units (ppy=2-phenylpyridine, Mes=mesityl) were successfully synthesized and fully structurally characterized. Their photochromic properties were examined by UV/Vis, emission and NMR spectroscopy. It was found that the DTE unit in all three compounds is the preferred photoisomerization site, exhibiting reversible photochromism with irradiation. The B(ppy)Mes2 unit does not undergo photoisomerization in these molecules, but likely enhances the photoisomerization quantum efficiency of the DTE moiety through the antenna effect. Extended irradiation with UV light leads to the rearrangement of the ring-closed isomers of DTE. TD-DFT computational studies indicate that the DTE photocyclization proceeds via a triplet pathway through an efficient energy transfer process.

12.
Chemistry ; 25(67): 15281-15287, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31502698

RESUMEN

Gated photochromism is of interest for the operation and control of modern high-tech optofunctional materials. For further advancing this topic towards the achievement of multifunctional molecular switching, however, it remains a great challenge to incorporate multiple fluorescence regulation into gated photochromism in one unimolecular system. Herein, it is reported that a dithienylethene derivative DTEN with a Schiff base connection can be facilely synthesized by one-step coupling, and it enabled distinct color and spectral changes upon different stimuli, including ultraviolet, visible light, Ni2+ , and Al3+ . Relying on hydrazine and hydroxy units in this molecule, compound DTEN exhibited novel Ni2+ -locked photochromic characteristics originating from complexation of the compound with Ni2+ in a 2:1 stoichiometry. On the other hand, a 1:1 complexation between compound DTEN and Al3+ could allow both of the initial and photostationary states of DTEN to display fluorescent enhancement and a redshift, realizing a dual-fluorescence "turn-on" sensing of Al3+ by light. On this basis, it is argued that the switching of the coordination mode between DTEN and Ni2+ or Al3+ brings up the possibility of tunable photoswitching by multiple stimuli, which offers a novel way for future development of multifunctional switching materials with different input and output signals, as exemplified by the construction of a delicate molecular circuit.

13.
Chemistry ; 24(7): 1631-1639, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29112319

RESUMEN

Four tetradithienylethene (DTE) substituted porphyrins, the free base 1H2 , and three metal derivatives (1Zn, 1Co, 1Ni), were synthesized and studied. These dyads, for which the DTE units are connected to the porphyrin's meso positions via a meta-phenyl spacer, exhibit reversible photochromic properties in all cases, with conversion to the photostationary state (PSS) up to 88 %, as confirmed by absorption and NMR spectroscopies. Compounds 1H2 and 1Zn are fluorescent in solution and display a red emission. Upon irradiation with UV light to trigger the closing of the DTEs, the fluorescence of both the free base and zinc porphyrin was very efficiently quenched in solution. The reversible, photo-switching of luminescence was retained in a tetra-DTE free-base porphyrin-doped polystyrene film, for which photo-patterning was demonstrated by confocal scanning microscopy. The tunable fluorescent properties of this multi-DTE framework render this compound of interest as a photo-rewritable fluorescent ink.

14.
Chemistry ; 24(41): 10315-10319, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-29869376

RESUMEN

Metal-containing dithienylethenes offer new opportunities for variations in photochromic behavior. This work reports a series of copper(I) complexes containing dithienylethene-based bidentate phosphine ligands displaying varying photochromic properties. A copper dimer is used as a common precursor, allowing diverse photochromic functionality to be achieved. Calculations show that ring closing of the peripheral dithienyl moiety leads to a slight expansion of the five-membered metallacycle. The photochromic properties and photoreaction quantum yields of these complexes are tunable by variation of the ancillary ligands. Photoswitchable catalysis of a hydroboration reaction with one of the copper complexes is demonstrated.

15.
Chemistry ; 23(54): 13423-13434, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28650111

RESUMEN

We describe the incorporation of the well-investigated class of photochromic dithienylethenes (DTEs) and fulgides into known dopamine receptor ligands such as 1,4-disubstituted aromatic and hydroxybenzoxazinone piperazines as well as aminoindanes. Subtype and functional selective photochromic ligands were obtained and characterized by NMR and UV/VIS spectroscopic measurements. The photophysical properties of the DTE based dopamine ligands revealed a high fatigue resistance for the diarylmaleimides, but the ringclosure could not be accomplished in polar solvents due to a known twisted intramolecular charge transfer (TICT). Several cyclopentene-DTEs showed high PSS, but a fast degradation by forming an irreversible byproduct. Focusing on the fulgides, high photostationary states and switching in polar solvents were possible. The compounds 43, 45 and 46 containing the isopropyl group showed only isomerization between the open E-form and the closed C-form. At a concentration of 1 nm, the cyclopentene-DTE 29-open showed a more than 11-fold higher activation of D2S , a pharmacologically important G protein-coupled receptor, than its photochromic congener 29-closed. Interestingly, the fulgimide-based pair 52-(E)-open/52-closed could be discovered as an alternative photoswitch with inverse activation properties exhibiting four-fold higher activity in the closed state.

16.
Chemphyschem ; 18(6): 596-609, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28092133

RESUMEN

Attaching an organometallic unit to a dithienylethene (DTE) molecular switch can allow one to vary its switching and spectroscopic properties, and to create switchable magnetic properties. In this work, two different dithienylethene molecular switches are used as a bridge between two cobalt sandwich units. The only difference between the switching cores is in the size of the cycloalkene ring connecting both thiophene rings. The complexes present different oxidation states for the cobalt atoms, which are demonstrated to determine the switching reaction. The UV/Vis measurements show that while the Co(I) complexes undergo the switching reaction, the Co(II,III) complexes switch poorly. Kohn-Sham density functional theory calculations indicate diabatic ring-closure mechanisms and a large number of excited states hindering the cyclization reaction and favoring the relaxation to the open form of the molecular switch.

17.
Angew Chem Int Ed Engl ; 56(49): 15622-15627, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29057559

RESUMEN

A bis(pyrazolylpyridyl) ligand, L, containing a central photochromic dithienylethene spacer predictably forms a ferrous [Fe2 L3 ]4+ helicate exhibiting spin crossover (SCO). In solution, the compound [Fe2 L3 ](ClO4 )4 (1) preserves the magnetic properties and is fluorescent. The structure of 1 is photo-switchable following the reversible ring closure/opening of the central dithienylethene via irradiation with UV/visible light. This photoisomerization switches on and off some emission bands of 1 and provides a means of externally manipulating the magnetic properties of the assembly.

18.
Chemistry ; 21(5): 2182-92, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25469818

RESUMEN

A series of dithienylethene-containing triarylboranes has been designed, synthesized, and characterized. The electrochemistry, photophysics, and photochromic behavior have also been studied. The photophysical and photochromic properties could be facilely tuned in this system by varying the thiophene spacers (thiophene, thienothiophene, and bithiophene) between the dithienylethene and the dimesitylboron (BMes2 ) or the position of the BMes2 substitution in the thiophene spacers. The absorption of closed form has been found to be more sensitive towards the structural modification upon incorporation of the BMes2 unit. Moreover, multi-addressable photochromic reactivity is obtained upon addition of Lewis base (F(-) ), which is due to the formation of boron-Lewis base adduct. The dependence of the photophysical and photochromic properties on the thiophene spacers and the position of the BMes2 substitution has been further supported by computational studies.

19.
Angew Chem Int Ed Engl ; 53(25): 6563-7, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24782320

RESUMEN

Two stable core-modified rubyrins bearing one and two dithienylethene (DTE) units (1 and 2) have been synthesized. With one "closed-form" DTE unit, 1 shows aromaticity associated with its conjugated circuit of 26 π-electrons. In contrast, rubyrin 2 containing one "open-form" DTE unit has nonaromatic properties.

20.
ACS Appl Bio Mater ; 7(2): 853-862, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38270977

RESUMEN

In biosensor development, silk fibroin is advantageous for providing transparent, flexible, chemically/mechanically stable, biocompatible, and sustainable substrates, where the biorecognition element remains functional for long time periods. These properties are employed here in the production of point-of-care biosensors for resource-limited regions, which are able to display glucose levels without the need for external instrumentation. These biosensors are produced by photopatterning silk films doped with the enzymes glucose oxidase and peroxidase and photoelectrochromic molecules from the dithienylethene family acting as colorimetric mediators of the enzymatic reaction. The photopatterning results from the photoisomerization of dithienylethene molecules in the silk film from its initial uncolored opened form to its pink closed one. The photoisomerization is dose-dependent, and colored patterns with increasing color intensities are obtained by increasing either the irradiation time or the light intensity. In the presence of glucose, the enzymatic cascade reaction is activated, and peroxidase selectively returns closed dithienylethene molecules to their initial uncolored state. Color disappearance in the silk film is proportional to glucose concentration and used to distinguish between hypoglycemic (below 4 mM), normoglycemic (4-6 mM), and hyperglycemic levels (above 6 mM) by visual inspection. After the measurement, the biosensor can be regenerated by irradiation with UV light, enabling up to five measurement cycles. The coupling of peroxidase activity to other oxidoreductases opens the possibility to produce long-life reusable smart biosensors for other analytes such as lactate, cholesterol, or ethanol.


Asunto(s)
Técnicas Biosensibles , Seda , Seda/química , Colorimetría/métodos , Peroxidasas , Técnicas Biosensibles/métodos , Peroxidasa , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA