Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(21)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113833

RESUMEN

Gallium nitride (GaN) devices are advantageous over conventional Silicon (Si) devices in terms of their small size, low on-resistance, and high dv/dt characteristics; these ensure a high integrated density circuit configuration, high efficiency, and fast switching speed. Therefore, in the diagnosis and protection of a system containing a GaN power semiconductor, the transient state for accurate switch current measurement must be analyzed. The pick-up coil, as a current sensor for switch current measurement in a system comprising a surface-mount-device-type nonmodular GaN power semiconductor, has the advantages of a higher degree-of-freedom configuration for its printed circuit board, a relatively small size, and lower cost than other current sensors. However, owing to the fast switching characteristics of the GaN device, a bandwidth of hundreds MHz must be secured along with a coil configuration that must overcome the limitations of relatively low sensitivity of the conventional current sensor. This paper analyzes the pick-up coil sensor models that can achieve optimal bandwidth and sensitivity for switch current measurement in GaN based device. So four configurable pick-up coil models are considered and compared according to coil-parameter using mathematical methods, magnetic, and frequency-response analysis. Finally, an optimal coil model is proposed and validated using a double-pulse test.

2.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37512669

RESUMEN

This study aims to develop a 30 kHz/12 kW silicon carbide (SiC)/Si integrated hybrid power module (iHPM) for variable frequency drive applications, particularly industrial servo motor control, and, additionally, to theoretically and experimentally assess its dynamic characteristics and efficiency during operation. This iHPM integrates a brake circuit, a three-phase Si rectifier, and a three-phase SiC inverter within a single package to achieve a minimal current path. A space-vector pulse width modulation (SVPWM) scheme is used to control the inverter power switches. In order to reduce parasitic inductance and power loss, an inductance cancellation design is implemented in the Si rectifier and SiC inverter. The switching transients and their parasitic effects during a three-phase operation are assessed through an electromagnetic-circuit co-simulation model, by which the power loss and efficiency of the iHPM are estimated. The modeled parasitic inductance of the inverter is validated through inductance measurement, and the effectiveness of the simulated results in terms of switching transients and efficiency is verified using the experimental results of the double pulse test and open-loop inverter operation, respectively. In addition, the power loss and efficiency of the SiC MOSFET inverter are experimentally compared against those of a commercial Si IGBT inverter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA