Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(40): e2402050, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38801298

RESUMEN

Electrocatalysis is a very attractive way to achieve a sustainable carbon cycle by converting CO2 into organic fuels and feedstocks. Therefore, it is crucial to design advanced electrocatalysts by understanding the reaction mechanism of electrochemical CO2 reduction reaction (eCO2RR) with multiple electron transfers. Among electrocatalysts, dual-atom catalysts (DACs) are promising candidates due to their distinct electronic structures and extremely high atomic utilization efficiency. Herein, the eCO2RR mechanism and the identification of intermediates using advanced characterization techniques, with a particular focus on regulating the critical intermediates are systematically summarized. Further, the insightful understanding of the functionality of DACs originates from the variable metrics of electronic structures including orbital structure, charge distribution, and electron spin state, which influences the active sites and critical intermediates in eCO2RR processes. Based on the intrinsic relationship between variable metrics and critical intermediates, the optimized strategies of DACs are summarized containing the participation of synergistic atoms, engineering of the atomic coordination environment, regulation of the diversity of central metal atoms, and modulation of metal-support interaction. Finally, the challenges and future opportunities of atomically dispersed catalysts for eCO2RR processes are discussed.

2.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837088

RESUMEN

MXene-supported single-atom catalysts (SACs) for water splitting has attracted extensive attention. However, the easy aggregation of individual metal atoms used as catalytic active centers usually leads to the relatively low loading of synthetic SACs, which limits the development and application of SACs. Herein, by performing first-principles calculations for Pt and 3d transition metal single atoms immobilized on a two-dimensional (2D) Mo2TiC2O2 MXene surface, we systematically studied the performance of heterogeneous dual-atom catalysts (h-DACs) in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Significantly, h-DACs exhibit higher metal atom loading and more flexible active sites compared to SACs. Benefiting from these features, we found that Pt/Cu@Mo2TiC2O2 heterogeneous DACs exhibits excellent HER activity with ultra-low overpotential |ΔGH∗| (0.04 eV), lower than the corresponding Pt@Mo2TiC2O2 (0.14 eV) and Cu@Mo2TiC2O2 (0.33 eV) SACs, and even lower than that of Pt (0.09 eV). Meanwhile, Pt/Ni@Mo2TiC2O2 exhibits superior OER activity with ultra-low overpotential ηOER (0.38 V), lower than that of Pt@Mo2TiC2O2 (1.11 V) and Ni@Mo2TiC2O2 (0.57 V) SACs, and even lower than that of RuO2 (0.42 V) and IrO2 (0.56 V). Our finding paves the way for the rational design of h-DACs for HER and OER with excellent activity, which provides guidance for other catalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA