Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903545

RESUMEN

Traditional coupling of ligands for gold wet etching makes large-scale applications problematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which could possibly overcome the shortcomings. In this work, the effect of water content on the Au anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy (AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution and passivation process. The obtained AFM data help to explain the observations about the effect of water content on the Au anodic process from the microscopic perspective. High water contents make the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In addition, AFM results illustrate that the passive film and its average roughness could be tailored by changing the water content of ethaline.

2.
Molecules ; 28(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36677688

RESUMEN

Edaravone, acting as a cerebral protective agent, is administered to treat acute brain infarction. Its poor solubility is addressed here by means of optimizing the composition of the aqueous choline chloride (ChCl)-based eutectic solvents prepared with ethylene glycol (EG) or glycerol (GL) in the three different designed solvents compositions. The slurry method was used for spectroscopic solubility determination in temperatures between 298.15 K and 313.15 K. Measurements confirmed that ethaline (ETA = ChCl:EG = 1:2) and glyceline (GLE = ChCl:GL = 1:2) are very effective solvents for edaravone. The solubility at 298.15 K in the optimal compositions was found to be equal xE = 0.158 (cE = 302.96 mg/mL) and xE = 0.105 (cE = 191.06 mg/mL) for glyceline and ethaline, respectively. In addition, it was documented that wetting of neat eutectic mixtures increases edaravone solubility which is a fortunate circumstance not only from the perspective of a solubility advantage but also addresses high hygroscopicity of eutectic mixtures. The aqueous mixture with 0.6 mole fraction of the optimal composition yielded solubility values at 298.15 K equal to xE = 0.193 (cE = 459.69 mg/mL) and xE = 0.145 (cE = 344.22 mg/mL) for glyceline and ethaline, respectively. Since GLE is a pharmaceutically acceptable solvent, it is possible to consider this as a potential new liquid form of this drug with a tunable dosage. In fact, the recommended amount of edaravone administered to patients can be easily achieved using the studied systems. The observed high solubility is interpreted in terms of intermolecular interactions computed using the Conductor-like Screening Model for Real Solvents (COSMO-RS) approach and corrected for accounting of electron correlation, zero-point vibrational energy and basis set superposition errors. Extensive conformational search allowed for identifying the most probable contacts, the thermodynamic and geometric features of which were collected and discussed. It was documented that edaravone can form stable dimers stabilized via stacking interactions between five-membered heterocyclic rings. In addition, edaravone can act as a hydrogen bond acceptor with all components of the studied systems with the highest affinities to ion pairs of ETA and GLE. Finally, the linear regression model was formulated, which can accurately estimate edaravone solubility utilizing molecular descriptors obtained from COSMO-RS computations. This enables the screening of new eutectic solvents for finding greener replacers of designed solvents. The theoretical analysis of tautomeric equilibria confirmed that keto-isomer edaravone is predominant in the bulk liquid phase of all considered deep eutectic solvents (DES).

3.
Anal Bioanal Chem ; 413(4): 1149-1157, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33410977

RESUMEN

A new electrochemical sensor based on thionine (TH), an electroactive polymer, and CuO nanoparticle (CuONP)-modified pencil graphite electrode (PGE) has been developed. Poly(thionine) (PTH) was formed on the CuO/PGE surface by electropolymerisation in ethaline deep eutectic solvent (DES) containing acetic acid dopant to form PTHEthaline/CuO/PGE. Cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry were utilized to evaluate the fabrication process, electrochemical properties, and performance parameters of the modified electrodes. The analytical performance of the PTHEthaline/CuO/PGE was evaluated with respect to linear range, limit of detection, repeatability, and reproducibility for the detection of acetaminophen (APAP) by electrooxidation in the presence of ascorbic acid (AA). Analytical parameters such as pH were optimized. The combined use of PTH and CuONP led to enhanced performance towards APAP due to the large electroactive surface area and synergistic catalytic effect, with a wide linear working range and low detection limit. The reliability of the proposed sensor for the detection of APAP was successfully tested in pharmaceutical samples containing APAP and AA, with very good recoveries. Graphical abstract.


Asunto(s)
Acetaminofén/análisis , Analgésicos no Narcóticos/análisis , Ácido Ascórbico/análisis , Cobre/química , Nanoestructuras/química , Fenotiazinas/química , Técnicas Electroquímicas/métodos , Electrodos , Grafito/química , Límite de Detección , Polímeros/química
4.
Sensors (Basel) ; 21(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562228

RESUMEN

A novel hybrid composite of conductive poly(methylene blue) (PMB) and carbon nanotubes (CNT) was prepared for the detection of 5-aminosalicylic acid (5-ASA). Electrosynthesis of PMB with glassy carbon electrode (GCE) or with carbon nanotube modified GCE was done in ethaline deep eutectic solvent of choline chloride mixed with ethylene glycol and a 10% v/v aqueous solution. Different sensor architectures were evaluated in a broad range of pH values in a Britton-Robinson (BR) buffer using electrochemical techniques, chronoamperometry (CA), and differential pulse voltammetry (DPV), to determine the optimum sensor configuration for 5-ASA sensing. Under optimal conditions, the best analytical performance was obtained with CNT/PMBDES/GCE in 0.04 M BR buffer pH 7.0 in the range 5-100 µM 5-ASA using the DPV method, with an excellent sensitivity of 9.84 µA cm-2 µM-1 (4.9 % RSD, n = 5) and a detection limit (LOD) (3σ/slope) of 7.7 nM, outclassing most similar sensors found in the literature. The sensitivity of the same sensor obtained in CA (1.33 µA cm-2 µM-1) under optimal conditions (pH 7.0, Eapp = +0.40 V) was lower than that obtained by DPV. Simultaneous detection of 5-ASA and its analogue, acetaminophen (APAP), was successfully realized, showing a catalytic effect towards the electro-oxidation of both analytes, lowering their oxidation overpotential, and enhancing the oxidation peak currents and peak-to-peak separation as compared with the unmodified electrode. The proposed method is simple, sensitive, easy to apply, and economical for routine analysis.

5.
Mikrochim Acta ; 187(11): 609, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33057990

RESUMEN

Electropolymerization of thionine (TH) on multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrodes (GCE) in ethaline deep eutectic solvent (DES) was carried out for the first time, to prepare poly(thionine) (PTH) films with different nanostructured morphologies. PTH films were formed on MWCNT/GCE by potential cycling electropolymerization in ethaline with the addition of different acid dopants CH3COOH, HClO4, HNO3, H2SO4 and HCl, acetic acid being the best. The electropolymerization process was monitored with an electrochemical quartz crystal microbalance. The polymerization scan rate was a key factor affecting the electrochemical and morphological properties of the PTHEthaline-CH3COOH/MWCNT/GCE; electrodeposition at 200 mV s-1 showing the best performance. The PTH/MWCNT/GCE platform was characterized using cyclic and differential pulse voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The analytical characteristics of the PTH films were evaluated for sensing of ascorbic acid and biosensing of uric acid. The developed sensor exhibited a low detection limit (1.1 µM), wide linear range (2.8-3010 µM) and high sensitivity (1134 µA cm-2 mM-1) for ascorbic acid. After immobilization of uricase, UOx, on PTH/MWCNT/GCE, the biosensor was successfully applied to the determination of uric acid, with fast response (˂ 7 s), good sensitivity (450 µA cm-2 mM-1, wide linear range (0.48-279 µM) and low detection limit (58.9 nM), better than in the literature and than with PTH prepared in aqueous solution. The determination of uric acid in synthetic urine samples was successfully tested and the mean analytical recovery was 100.8 ± 1.4%. This is a promising approach for the determination of uric acid in real samples. Graphical abstract.


Asunto(s)
Disolventes Eutécticos Profundos/química , Técnicas Electroquímicas/métodos , Nanotubos de Carbono/química , Polímeros/química , Ácido Acético , Ácido Ascórbico/análisis , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Colina/química , Técnicas Electroquímicas/instrumentación , Electrodos , Enzimas Inmovilizadas/química , Glicol de Etileno/química , Límite de Detección , Fenotiazinas/química , Polimerizacion , Urato Oxidasa/química , Ácido Úrico/química , Ácido Úrico/orina
6.
Appl Petrochem Res ; 11(3): 335-351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603906

RESUMEN

Deep eutectic solvents (DESs) have high viscosities, but known to be mitigated by addition of suitable co-solvent. The effect of such co-solvent on the extraction efficiency of the hybrid solvent is hardly known. This study examined the effect of ethanol on three choline chloride-based DESs (glyceline, reline, and ethaline) by mixing each in turn with ethanol in various volume proportions. The hybrid solvents were evaluated for the extraction of benzene from n-hexane. Pseudo-ternary liquid-liquid equilibrium data were obtained using the refractive index method at 303 K and 1 atm for the systems, n-hexane (1) + benzene (2) + hybrid solvent (glyceline/ethanol, ethaline/ethanol, reline/ethanol) (3), and used to evaluate distribution coefficient (D) and selectivity (S). Furthermore, the physicochemical properties of the hybrid solvents were also determined. The results indicate increase in selectivity with increasing ethanol addition up to 50% and decrease with further addition. All hybrid solvents with 50% ethanol outperform sulfolane and are suitable replacement for same as green and sustainable extractant for aromatics from aliphatics. The glyceline + 50% ethanol emerged the overall best with 49.73% elevation in selectivity and 41.15% reduction in viscosity relative to the neat glyceline. The finding of this study is expected to fillip the drive for paradigm shift in petrochemical industries. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13203-021-00282-y.

7.
Talanta ; 208: 120427, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816744

RESUMEN

A highly sensitive glucose oxidase (GOx) electrochemical biosensor for the determination of the biotoxic trace metal ions Hg2+, Cd2+, Pb2+ and CrVI by enzyme inhibition has been developed. GOx was immobilized on a novel sensing platform consisting of poly(brilliant green) films formed by potential cycling electropolymerization in sulfuric acid doped ethaline deep eutectic solvent on multiwalled carbon nanotube modified glassy carbon electrodes. Polymer films produced in this medium presented more uniform morphology and better electrochemical sensing properties than those prepared in aqueous solution. The inhibitor concentration necessary to give 50% inhibition, I50, was used for the determination of the type of reversible inhibition, and the relationship between I50 and the inhibition constant Ki is discussed. The new biosensor was successfully used for the determination of biotoxic trace metal ions with a nanomolar limit of detection, lower than in the literature, very good repeatability, stability and selectivity, and was applied successfully to detection of the toxic trace metal species in milk samples.


Asunto(s)
Técnicas Biosensibles , Glucosa Oxidasa/antagonistas & inhibidores , Metales Pesados/análisis , Técnicas Electroquímicas , Electrodos , Glucosa Oxidasa/química , Metales Pesados/química , Nanotubos de Carbono/química , Polímeros/química , Compuestos de Amonio Cuaternario/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA