Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Prostate ; 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39400372

RESUMEN

BACKGROUND: Though several nomograms exist, machine learning (ML) approaches might improve prediction of pathologic stage in patients with prostate cancer. To develop ML models to predict pathologic stage that outperform existing nomograms that use readily available clinicopathologic variables. METHODS: Patients with prostate adenocarcinoma who underwent surgery were identified in the National Cancer Database. Seven ML models were trained to predict organ-confined (OC) disease, extracapsular extension, seminal vesicle invasion (SVI), and lymph node involvement (LNI). Model performance was measured using area under the curve (AUC) on a holdout testing data set. Clinical utility was evaluated using decision curve analysis (DCA). Performance metrics were confirmed on an external validation data set. RESULTS: The ML-based extreme gradient boosted trees model achieved the best performance with an AUC of 0.744, 0.749, 0.816, 0.811 for the OC, ECE, SVI, and LNI models, respectively. The MSK nomograms achieved an AUC of 0.708, 0.742, 0.806, 0.802 for the OC, ECE, SVI, and LNI models, respectively. These models also performed the best on DCA. Findings were consistent on both a holdout internal validation data set as well as an external validation data set. CONCLUSIONS: Our ML models better predicted pathologic stage relative to existing nomograms at predicting pathologic stage. Accurate prediction of pathologic stage can help oncologists and patients determine optimal definitive treatment options for patients with prostate cancer.

2.
BMC Med Res Methodol ; 24(1): 114, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760718

RESUMEN

BACKGROUND: Smoking is a critical risk factor responsible for over eight million annual deaths worldwide. It is essential to obtain information on smoking habits to advance research and implement preventive measures such as screening of high-risk individuals. In most countries, including Denmark, smoking habits are not systematically recorded and at best documented within unstructured free-text segments of electronic health records (EHRs). This would require researchers and clinicians to manually navigate through extensive amounts of unstructured data, which is one of the main reasons that smoking habits are rarely integrated into larger studies. Our aim is to develop machine learning models to classify patients' smoking status from their EHRs. METHODS: This study proposes an efficient natural language processing (NLP) pipeline capable of classifying patients' smoking status and providing explanations for the decisions. The proposed NLP pipeline comprises four distinct components, which are; (1) considering preprocessing techniques to address abbreviations, punctuation, and other textual irregularities, (2) four cutting-edge feature extraction techniques, i.e. Embedding, BERT, Word2Vec, and Count Vectorizer, employed to extract the optimal features, (3) utilization of a Stacking-based Ensemble (SE) model and a Convolutional Long Short-Term Memory Neural Network (CNN-LSTM) for the identification of smoking status, and (4) application of a local interpretable model-agnostic explanation to explain the decisions rendered by the detection models. The EHRs of 23,132 patients with suspected lung cancer were collected from the Region of Southern Denmark during the period 1/1/2009-31/12/2018. A medical professional annotated the data into 'Smoker' and 'Non-Smoker' with further classifications as 'Active-Smoker', 'Former-Smoker', and 'Never-Smoker'. Subsequently, the annotated dataset was used for the development of binary and multiclass classification models. An extensive comparison was conducted of the detection performance across various model architectures. RESULTS: The results of experimental validation confirm the consistency among the models. However, for binary classification, BERT method with CNN-LSTM architecture outperformed other models by achieving precision, recall, and F1-scores between 97% and 99% for both Never-Smokers and Active-Smokers. In multiclass classification, the Embedding technique with CNN-LSTM architecture yielded the most favorable results in class-specific evaluations, with equal performance measures of 97% for Never-Smoker and measures in the range of 86 to 89% for Active-Smoker and 91-92% for Never-Smoker. CONCLUSION: Our proposed NLP pipeline achieved a high level of classification performance. In addition, we presented the explanation of the decision made by the best performing detection model. Future work will expand the model's capabilities to analyze longer notes and a broader range of categories to maximize its utility in further research and screening applications.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Fumar , Humanos , Dinamarca/epidemiología , Registros Electrónicos de Salud/estadística & datos numéricos , Fumar/epidemiología , Aprendizaje Automático , Femenino , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación
3.
Environ Sci Technol ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394040

RESUMEN

Stream salinization is a global issue, yet few models can provide reliable salinity estimates for unmonitored locations at the time scales required for ecological exposure assessments. Machine learning approaches are presented that use spatially limited high-frequency monitoring and spatially distributed discrete samples to estimate the daily stream-specific conductance across a watershed. We compare the predictive performance of space- and time-unaware Random Forest models and space- and time-aware Recurrent Graph Convolution Neural Network models (KGE: 0.67 and 0.64, respectively) and use explainable artificial intelligence methods to interpret model predictions and understand salinization drivers. These models are applied to the Delaware River Basin, a developed watershed with diverse land uses that experiences anthropogenic salinization from winter deicer applications. These models capture seasonality for the winter first flush of deicers, and the streams with elevated predictions correspond well with indicators of deicer application. This result suggests that these models can be used to identify potential salinity-impaired streams for winter best management practices. Daily salinity predictions are driven primarily by land cover (urbanization) trends that may represent anthropogenic salinization processes and weather at time scales up to three months. Such modeling approaches are likely transferable to other watersheds and can be applied to further understand salinization risks and drivers.

4.
J Korean Med Sci ; 39(5): e53, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317451

RESUMEN

BACKGROUND: Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department. METHODS: This study prospectively collected nationwide data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Patients were enrolled from 19 hospitals between September 2019 and December 2020. For acquired data from 3,657 survivors and 1,455 deaths, six ML models (logistic regression, support vector machine, random forest, extreme gradient boosting [XGBoost], light gradient boosting machine, and categorical boosting [CatBoost]) were constructed using fivefold cross-validation to predict mortality. Through these models, 44 clinical variables measured on the day of admission were compared with six sequential organ failure assessment (SOFA) components (PaO2/FIO2 [PF], platelets (PLT), bilirubin, cardiovascular, Glasgow Coma Scale score, and creatinine). The confidence interval (CI) was obtained by performing 10,000 repeated measurements via random sampling of the test dataset. All results were explained and interpreted using Shapley's additive explanations (SHAP). RESULTS: Of the 5,112 participants, CatBoost exhibited the highest area under the curve (AUC) of 0.800 (95% CI, 0.756-0.840) using clinical variables. Using the SOFA components for the same patient, XGBoost exhibited the highest AUC of 0.678 (95% CI, 0.626-0.730). As interpreted by SHAP, albumin, lactate, blood urea nitrogen, and international normalization ratio were determined to significantly affect the results. Additionally, PF and PLTs in the SOFA component significantly influenced the prediction results. CONCLUSION: Newly established ML-based models achieved good prediction of mortality in patients with sepsis. Using several clinical variables acquired at the baseline can provide more accurate results for early predictions than using SOFA components. Additionally, the impact of each variable was identified.


Asunto(s)
Servicio de Urgencia en Hospital , Sepsis , Humanos , Albúminas , Ácido Láctico , Aprendizaje Automático , Sepsis/diagnóstico
5.
Sensors (Basel) ; 24(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794052

RESUMEN

Recently, explainability in machine and deep learning has become an important area in the field of research as well as interest, both due to the increasing use of artificial intelligence (AI) methods and understanding of the decisions made by models. The explainability of artificial intelligence (XAI) is due to the increasing consciousness in, among other things, data mining, error elimination, and learning performance by various AI algorithms. Moreover, XAI will allow the decisions made by models in problems to be more transparent as well as effective. In this study, models from the 'glass box' group of Decision Tree, among others, and the 'black box' group of Random Forest, among others, were proposed to understand the identification of selected types of currant powders. The learning process of these models was carried out to determine accuracy indicators such as accuracy, precision, recall, and F1-score. It was visualized using Local Interpretable Model Agnostic Explanations (LIMEs) to predict the effectiveness of identifying specific types of blackcurrant powders based on texture descriptors such as entropy, contrast, correlation, dissimilarity, and homogeneity. Bagging (Bagging_100), Decision Tree (DT0), and Random Forest (RF7_gini) proved to be the most effective models in the framework of currant powder interpretability. The measures of classifier performance in terms of accuracy, precision, recall, and F1-score for Bagging_100, respectively, reached values of approximately 0.979. In comparison, DT0 reached values of 0.968, 0.972, 0.968, and 0.969, and RF7_gini reached values of 0.963, 0.964, 0.963, and 0.963. These models achieved classifier performance measures of greater than 96%. In the future, XAI using agnostic models can be an additional important tool to help analyze data, including food products, even online.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aprendizaje Automático , Polvos , Ribes , Polvos/química , Ribes/química , Árboles de Decisión
6.
Entropy (Basel) ; 26(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38248195

RESUMEN

This study presents a novel approach to predicting price fluctuations for U.S. sector index ETFs. By leveraging information-theoretic measures like mutual information and transfer entropy, we constructed threshold networks highlighting nonlinear dependencies between log returns and trading volume rate changes. We derived centrality measures and node embeddings from these networks, offering unique insights into the ETFs' dynamics. By integrating these features into gradient-boosting algorithm-based models, we significantly enhanced the predictive accuracy. Our approach offers improved forecast performance for U.S. sector index futures and adds a layer of explainability to the existing literature.

7.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298417

RESUMEN

The emerging field of eXplainable AI (XAI) in the medical domain is considered to be of utmost importance. Meanwhile, incorporating explanations in the medical domain with respect to legal and ethical AI is necessary to understand detailed decisions, results, and current status of the patient's conditions. Successively, we will be presenting a detailed survey for the medical XAI with the model enhancements, evaluation methods, significant overview of case studies with open box architecture, medical open datasets, and future improvements. Potential differences in AI and XAI methods are provided with the recent XAI methods stated as (i) local and global methods for preprocessing, (ii) knowledge base and distillation algorithms, and (iii) interpretable machine learning. XAI characteristics details with future healthcare explainability is included prominently, whereas the pre-requisite provides insights for the brainstorming sessions before beginning a medical XAI project. Practical case study determines the recent XAI progress leading to the advance developments within the medical field. Ultimately, this survey proposes critical ideas surrounding a user-in-the-loop approach, with an emphasis on human-machine collaboration, to better produce explainable solutions. The surrounding details of the XAI feedback system for human rating-based evaluation provides intelligible insights into a constructive method to produce human enforced explanation feedback. For a long time, XAI limitations of the ratings, scores and grading are present. Therefore, a novel XAI recommendation system and XAI scoring system are designed and approached from this work. Additionally, this paper encourages the importance of implementing explainable solutions into the high impact medical field.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos
8.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36501938

RESUMEN

The advent of Industry 4.0 has revolutionized the life enormously. There is a growing trend towards the Internet of Things (IoT), which has made life easier on the one hand and improved services on the other. However, it also has vulnerabilities due to cyber security attacks. Therefore, there is a need for intelligent and reliable security systems that can proactively analyze the data generated by these devices and detect cybersecurity attacks. This study proposed a proactive interpretable prediction model using ML and explainable artificial intelligence (XAI) to detect different types of security attacks using the log data generated by heating, ventilation, and air conditioning (HVAC) attacks. Several ML algorithms were used, such as Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Ada Boost (AB), Light Gradient Boosting (LGBM), Extreme Gradient Boosting (XGBoost), and CatBoost (CB). Furthermore, feature selection was performed using stepwise forward feature selection (FFS) technique. To alleviate the data imbalance, SMOTE and Tomeklink were used. In addition, SMOTE achieved the best results with selected features. Empirical experiments were conducted, and the results showed that the XGBoost classifier has produced the best result with 0.9999 Area Under the Curve (AUC), 0.9998, accuracy (ACC), 0.9996 Recall, 1.000 Precision and 0.9998 F1 Score got the best result. Additionally, XAI was applied to the best performing model to add the interpretability in the black-box model. Local and global explanations were generated using LIME and SHAP. The results of the proposed study have confirmed the effectiveness of ML for predicting the cyber security attacks on IoT devices and Industry 4.0.


Asunto(s)
Aire Acondicionado , Inteligencia Artificial , Respiración , Ventilación , Calefacción
9.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557169

RESUMEN

In the time series classification domain, shapelets are subsequences that are discriminative of a certain class. It has been shown that classifiers are able to achieve state-of-the-art results by taking the distances from the input time series to different discriminative shapelets as the input. Additionally, these shapelets can be visualized and thus possess an interpretable characteristic, making them appealing in critical domains, where longitudinal data are ubiquitous. In this study, a new paradigm for shapelet discovery is proposed, which is based on evolutionary computation. The advantages of the proposed approach are that: (i) it is gradient-free, which could allow escaping from local optima more easily and supports non-differentiable objectives; (ii) no brute-force search is required, making the algorithm scalable; (iii) the total amount of shapelets and the length of each of these shapelets are evolved jointly with the shapelets themselves, alleviating the need to specify this beforehand; (iv) entire sets are evaluated at once as opposed to single shapelets, which results in smaller final sets with fewer similar shapelets that result in similar predictive performances; and (v) the discovered shapelets do not need to be a subsequence of the input time series. We present the results of the experiments, which validate the enumerated advantages.

10.
Sci Rep ; 14(1): 15751, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977750

RESUMEN

The need for intubation in methanol-poisoned patients, if not predicted in time, can lead to irreparable complications and even death. Artificial intelligence (AI) techniques like machine learning (ML) and deep learning (DL) greatly aid in accurately predicting intubation needs for methanol-poisoned patients. So, our study aims to assess Explainable Artificial Intelligence (XAI) for predicting intubation necessity in methanol-poisoned patients, comparing deep learning and machine learning models. This study analyzed a dataset of 897 patient records from Loghman Hakim Hospital in Tehran, Iran, encompassing cases of methanol poisoning, including those requiring intubation (202 cases) and those not requiring it (695 cases). Eight established ML (SVM, XGB, DT, RF) and DL (DNN, FNN, LSTM, CNN) models were used. Techniques such as tenfold cross-validation and hyperparameter tuning were applied to prevent overfitting. The study also focused on interpretability through SHAP and LIME methods. Model performance was evaluated based on accuracy, specificity, sensitivity, F1-score, and ROC curve metrics. Among DL models, LSTM showed superior performance in accuracy (94.0%), sensitivity (99.0%), specificity (94.0%), and F1-score (97.0%). CNN led in ROC with 78.0%. For ML models, RF excelled in accuracy (97.0%) and specificity (100%), followed by XGB with sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%). Overall, RF and XGB outperformed other models, with accuracy (97.0%) and specificity (100%) for RF, and sensitivity (99.37%), F1-score (98.27%), and ROC (96.08%) for XGB. ML models surpassed DL models across all metrics, with accuracies from 93.0% to 97.0% for DL and 93.0% to 99.0% for ML. Sensitivities ranged from 98.0% to 99.37% for DL and 93.0% to 99.0% for ML. DL models achieved specificities from 78.0% to 94.0%, while ML models ranged from 93.0% to 100%. F1-scores for DL were between 93.0% and 97.0%, and for ML between 96.0% and 98.27%. DL models scored ROC between 68.0% and 78.0%, while ML models ranged from 84.0% to 96.08%. Key features for predicting intubation necessity include GCS at admission, ICU admission, age, longer folic acid therapy duration, elevated BUN and AST levels, VBG_HCO3 at initial record, and hemodialysis presence. This study as the showcases XAI's effectiveness in predicting intubation necessity in methanol-poisoned patients. ML models, particularly RF and XGB, outperform DL counterparts, underscoring their potential for clinical decision-making.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Metanol , Humanos , Metanol/envenenamiento , Masculino , Femenino , Aprendizaje Profundo , Intubación Intratraqueal/métodos , Irán , Adulto , Persona de Mediana Edad , Curva ROC
11.
Adv Mater ; 36(7): e2307160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37904613

RESUMEN

Large-area processing of perovskite semiconductor thin-films is complex and evokes unexplained variance in quality, posing a major hurdle for the commercialization of perovskite photovoltaics. Advances in scalable fabrication processes are currently limited to gradual and arbitrary trial-and-error procedures. While the in situ acquisition of photoluminescence (PL) videos has the potential to reveal important variations in the thin-film formation process, the high dimensionality of the data quickly surpasses the limits of human analysis. In response, this study leverages deep learning (DL) and explainable artificial intelligence (XAI) to discover relationships between sensor information acquired during the perovskite thin-film formation process and the resulting solar cell performance indicators, while rendering these relationships humanly understandable. The study further shows how gained insights can be distilled into actionable recommendations for perovskite thin-film processing, advancing toward industrial-scale solar cell manufacturing. This study demonstrates that XAI methods will play a critical role in accelerating energy materials science.

12.
Front Mol Biosci ; 11: 1429281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314212

RESUMEN

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant challenges worldwide, including diverse clinical outcomes and prolonged post-recovery symptoms known as Long COVID or Post-COVID-19 syndrome. Emerging evidence suggests a crucial role of metabolic reprogramming in the infection's long-term consequences. This study employs a novel approach utilizing machine learning (ML) and explainable artificial intelligence (XAI) to analyze metabolic alterations in COVID-19 and Post-COVID-19 patients. Samples were taken from a cohort of 142 COVID-19, 48 Post-COVID-19, and 38 control patients, comprising 111 identified metabolites. Traditional analysis methods, like PCA and PLS-DA, were compared with ML techniques, particularly eXtreme Gradient Boosting (XGBoost) enhanced by SHAP (SHapley Additive exPlanations) values for explainability. XGBoost, combined with SHAP, outperformed traditional methods, demonstrating superior predictive performance and providing new insights into the metabolic basis of the disease's progression and aftermath. The analysis revealed metabolomic subgroups within the COVID-19 and Post-COVID-19 conditions, suggesting heterogeneous metabolic responses to the infection and its long-term impacts. Key metabolic signatures in Post-COVID-19 include taurine, glutamine, alpha-Ketoglutaric acid, and LysoPC a C16:0. This study highlights the potential of integrating ML and XAI for a fine-grained description in metabolomics research, offering a more detailed understanding of metabolic anomalies in COVID-19 and Post-COVID-19 conditions.

13.
Heliyon ; 10(17): e36841, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281494

RESUMEN

The design of masonry structures requires accurate estimation of compressive strength (CS) of hollow concrete masonry prisms. Generally, the CS of masonry prisms is determined by destructive laboratory testing which results in time and resource wastage. Thus, this study aims to provide machine learning-based predictive models for CS of hollow concrete masonry blocks using different algorithms including Multi Expression Programming (MEP), Random Forest Regression (RFR), and Extreme Gradient Boosting (XGB) etc. A dataset of 159 experimental results was collected from published literature for this purpose. The collected dataset consisted of four input parameters including strength of masonry units ( f b ), height-to-thickness ratio (h/t), strength of mortar ( f m ), and ratio of f m / f b and only one output parameter i.e., CS. Out of all the algorithms employed in current study, only MEP and GEP expressed their output in the form of an empirical equation. The accuracy of developed models was assessed using root mean squared error (RMSE), objective function (OF), and R 2 etc. Among all algorithms assessed, XGB turned out to be the most accurate having R 2  = 0.99 and least OF value of 0.0063 followed by AdaBoost, RFR, and other algorithms. The developed XGB model was also used to conduct different explainable artificial intelligence (XAI) analysis including sensitivity and shapley analysis and the results showed that strength of masonry unit ( f b ) is the most significant variable in predicting CS. Thus, the ML-based predictive models presented in this study can be utilized practically for determining CS of hollow concrete masonry prisms without requiring expensive and time-consuming laboratory testing.

14.
Comput Biol Med ; 181: 109044, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180859

RESUMEN

Wrist pathologies, particularly fractures common among children and adolescents, present a critical diagnostic challenge. While X-ray imaging remains a prevalent diagnostic tool, the increasing misinterpretation rates highlight the need for more accurate analysis, especially considering the lack of specialized training among many surgeons and physicians. Recent advancements in deep convolutional neural networks offer promise in automating pathology detection in trauma X-rays. However, distinguishing subtle variations between pediatric wrist pathologies in X-rays remains challenging. Traditional manual annotation, though effective, is laborious, costly, and requires specialized expertise. In this paper, we address the challenge of pediatric wrist pathology recognition with a fine-grained approach, aimed at automatically identifying discriminative regions in X-rays without manual intervention. We refine our fine-grained architecture through ablation analysis and the integration of LION. Leveraging Grad-CAM, an explainable AI technique, we highlight these regions. Despite using limited data, reflective of real-world medical study constraints, our method consistently outperforms state-of-the-art image recognition models on both augmented and original (challenging) test sets. Our proposed refined architecture achieves an increase in accuracy of 1.06% and 1.25% compared to the baseline method, resulting in accuracies of 86% and 84%, respectively. Moreover, our approach demonstrates the highest fracture sensitivity of 97%, highlighting its potential to enhance wrist pathology recognition.


Asunto(s)
Muñeca , Humanos , Niño , Adolescente , Muñeca/diagnóstico por imagen , Traumatismos de la Muñeca/diagnóstico por imagen , Masculino , Femenino , Fracturas Óseas/diagnóstico por imagen , Redes Neurales de la Computación , Preescolar
15.
Front Med (Lausanne) ; 11: 1438720, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328315

RESUMEN

Emotional recognition is a way of detecting, evaluating, interpreting, and responding to others' emotional states and feelings, which might range from delight to fear to disgrace. There is increasing interest in the domains of psychological computing and human-computer interface (HCI), especially Emotion Recognition (ER) in Virtual Reality (VR). Human emotions and mental states are effectively captured using Electroencephalography (EEG), and there has been a growing need for analysis in VR situations. In this study, we investigated emotion recognition in a VR environment using explainable machine learning and deep learning techniques. Specifically, we employed Support Vector Classifiers (SVC), K-Nearest Neighbors (KNN), Logistic Regression (LR), Deep Neural Networks (DNN), DNN with flattened layer, Bi-directional Long-short Term Memory (Bi-LSTM), and Attention LSTM. This research utilized an effective multimodal dataset named VREED (VR Eyes: Emotions Dataset) for emotion recognition. The dataset was first reduced to binary and multi-class categories. We then processed the dataset to handle missing values and applied normalization techniques to enhance data consistency. Subsequently, explainable Machine Learning (ML) and Deep Learning (DL) classifiers were employed to predict emotions in VR. Experimental analysis and results indicate that the Attention LSTM model excelled in binary classification, while both DNN and Attention LSTM achieved outstanding performance in multi-class classification, with up to 99.99% accuracy. These findings underscore the efficacy of integrating VR with advanced, explainable ML and DL methods for emotion recognition.

16.
Heliyon ; 10(13): e33826, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027625

RESUMEN

Although presepsin, a crucial biomarker for the diagnosis and management of sepsis, has gained prominence in contemporary medical research, its relationship with routine laboratory parameters, including demographic data and hospital blood test data, remains underexplored. This study integrates machine learning with explainable artificial intelligence (XAI) to provide insights into the relationship between presepsin and these parameters. Advanced machine learning classifiers provide a multilateral view of data and play an important role in highlighting the interrelationships between presepsin and other parameters. XAI enhances analysis by ensuring transparency in the model's decisions, especially in selecting key parameters that significantly enhance classification accuracy. Utilizing XAI, this study successfully identified critical parameters that increased the predictive accuracy for sepsis patients, achieving a remarkable ROC AUC of 0.97 and an accuracy of 0.94. This breakthrough is possibly attributed to the comprehensive utilization of XAI in refining parameter selection, thus leading to these significant predictive metrics. The presence of missing data in datasets is another concern; this study addresses it by employing Extreme Gradient Boosting (XGBoost) to manage missing data, effectively mitigating potential biases while preserving both the accuracy and relevance of the results. The perspective of examining data from higher dimensions using machine learning transcends traditional observation and analysis. The findings of this study hold the potential to enhance patient diagnoses and treatment, underscoring the value of merging traditional research methods with advanced analytical tools.

17.
Environ Sci Pollut Res Int ; 31(30): 42948-42969, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884936

RESUMEN

In Saudi Arabia, water pollution and drinking water scarcity pose a major challenge and jeopardise the achievement of sustainable development goals. The urgent need for rapid and accurate monitoring and assessment of water quality requires sophisticated, data-driven solutions for better decision-making in water management. This study aims to develop optimised data-driven models for comprehensive water quality assessment to enable informed decisions that are critical for sustainable water resources management. We used an entropy-weighted arithmetic technique to calculate the Water Quality Index (WQI), which integrates the World Health Organization (WHO) standards for various water quality parameters. Our methodology incorporated advanced machine learning (ML) models, including decision trees, random forests (RF) and correlation analyses to select features essential for identifying critical water quality parameters. We developed and optimised data-driven models such as gradient boosting machines (GBM), deep neural networks (DNN) and RF within the H2O API framework to ensure efficient data processing and handling. Interpretation of these models was achieved through a three-pronged explainable artificial intelligence (XAI) approach: model diagnosis with residual analysis, model parts with permutation-based feature importance and model profiling with partial dependence plots (PDP), accumulated local effects (ALE) plots and individual conditional expectation (ICE) plots. The quantitative results revealed insightful findings: fluoride and residual chlorine had the highest and lowest entropy weights, respectively, indicating their differential effects on water quality. Over 35% of the water samples were categorised as 'unsuitable' for consumption, highlighting the urgency of taking action to improve water quality. Amongst the optimised models, the Random Forest (model 79) and the Deep Neural Network (model 81) proved to be the most effective and showed robust predictive abilities with R2 values of 0.96 and 0.97 respectively for testing dataset. Model profiling as XAI highlighted the significant influence of key parameters such as nitrate, total hardness and pH on WQI predictions. These findings enable targeted water quality improvement measures that are in line with sustainable water management goals. Therefore, our study demonstrates the potential of advanced, data-driven methods to revolutionise water quality assessment in Saudi Arabia. By providing a more nuanced understanding of water quality dynamics and enabling effective decision-making, these models contribute significantly to the sustainable management of valuable water resources.


Asunto(s)
Inteligencia Artificial , Toma de Decisiones , Calidad del Agua , Arabia Saudita , Contaminación del Agua , Aprendizaje Automático , Monitoreo del Ambiente/métodos , Redes Neurales de la Computación
18.
Phys Med Biol ; 69(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955331

RESUMEN

Objective.The trend in the medical field is towards intelligent detection-based medical diagnostic systems. However, these methods are often seen as 'black boxes' due to their lack of interpretability. This situation presents challenges in identifying reasons for misdiagnoses and improving accuracy, which leads to potential risks of misdiagnosis and delayed treatment. Therefore, how to enhance the interpretability of diagnostic models is crucial for improving patient outcomes and reducing treatment delays. So far, only limited researches exist on deep learning-based prediction of spontaneous pneumothorax, a pulmonary disease that affects lung ventilation and venous return.Approach.This study develops an integrated medical image analysis system using explainable deep learning model for image recognition and visualization to achieve an interpretable automatic diagnosis process.Main results.The system achieves an impressive 95.56% accuracy in pneumothorax classification, which emphasizes the significance of the blood vessel penetration defect in clinical judgment.Significance.This would lead to improve model trustworthiness, reduce uncertainty, and accurate diagnosis of various lung diseases, which results in better medical outcomes for patients and better utilization of medical resources. Future research can focus on implementing new deep learning models to detect and diagnose other lung diseases that can enhance the generalizability of this system.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Neumotórax , Neumotórax/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X
19.
Stud Health Technol Inform ; 316: 678-682, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39176833

RESUMEN

Emergency department (ED) overcrowding is a complex problem that is intricately linked with the operations of other hospital departments. Leveraging ED real-world production data provides a unique opportunity to comprehend this multifaceted problem holistically. This paper introduces a novel approach to analyse healthcare production data, treating the length of stay of patients, and the follow up decision regarding discharge or admission to the hospital as a time-to-event analysis problem. Our methodology employs traditional survival estimators and machine learning models, and Shapley additive explanations values to interpret the model outcomes. The most relevant features influencing length of stay were whether the patient received a scan at the ED, emergency room urgent visit, age, triage level, and the medical alarm unit category. The clinical insights derived from the explanation of the models holds promise for increase understanding of the overcrowding from the data. Our work demonstrates that a time-to-event approach to the over- crowding serves as a valuable initial to uncover crucial insights for further investigation and policy design.


Asunto(s)
Aglomeración , Servicio de Urgencia en Hospital , Tiempo de Internación , Aprendizaje Automático , Humanos , Triaje
20.
Cogn Neurodyn ; 18(4): 1609-1625, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104684

RESUMEN

In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10028-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA