Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38836701

RESUMEN

Biomedical data are generated and collected from various sources, including medical imaging, laboratory tests and genome sequencing. Sharing these data for research can help address unmet health needs, contribute to scientific breakthroughs, accelerate the development of more effective treatments and inform public health policy. Due to the potential sensitivity of such data, however, privacy concerns have led to policies that restrict data sharing. In addition, sharing sensitive data requires a secure and robust infrastructure with appropriate storage solutions. Here, we examine and compare the centralized and federated data sharing models through the prism of five large-scale and real-world use cases of strategic significance within the European data sharing landscape: the French Health Data Hub, the BBMRI-ERIC Colorectal Cancer Cohort, the federated European Genome-phenome Archive, the Observational Medical Outcomes Partnership/OHDSI network and the EBRAINS Medical Informatics Platform. Our analysis indicates that centralized models facilitate data linkage, harmonization and interoperability, while federated models facilitate scaling up and legal compliance, as the data typically reside on the data generator's premises, allowing for better control of how data are shared. This comparative study thus offers guidance on the selection of the most appropriate sharing strategy for sensitive datasets and provides key insights for informed decision-making in data sharing efforts.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Difusión de la Información , Humanos , Informática Médica/métodos
2.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35009764

RESUMEN

Technological breakthroughs have offered innovative solutions for smart parking systems, independent of the use of computer vision, smart sensors, gap sensing, and other variations. We now have a high degree of confidence in spot classification or object detection at the parking level. The only thing missing is end-user satisfaction, as users are forced to use multiple interfaces to find a parking spot in a geographical area. We propose a trustless federated model that will add a layer of abstraction between the technology and the human interface to facilitate user adoption and responsible data acquisition by leveraging a federated identity protocol based on Zero Knowledge Cryptography. No central authority is needed for the model to work; thus, it is trustless. Chained trust relationships generate a graph of trustworthiness, which is necessary to bridge the gap from one smart parking program to an intelligent system that enables smart cities. With the help of Zero Knowledge Cryptography, end users can attain a high degree of mobility and anonymity while using a diverse array of service providers. From an investor's standpoint, the usage of IPFS (InterPlanetary File System) lowers operational costs, increases service resilience, and decentralizes the network of smart parking solutions. A peer-to-peer content addressing system ensures that the data are moved close to the users without deploying expensive cloud-based infrastructure. The result is a macro system with independent actors that feed each other data and expose information in a common protocol. Different client implementations can offer the same experience, even though the parking providers use different technologies. We call this InterPlanetary Smart Parking Architecture NOW-IPSPAN.

3.
Annu Rev Biomed Data Sci ; 7(1): 179-199, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723657

RESUMEN

The progress of precision medicine research hinges on the gathering and analysis of extensive and diverse clinical datasets. With the continued expansion of modalities, scales, and sources of clinical datasets, it becomes imperative to devise methods for aggregating information from these varied sources to achieve a comprehensive understanding of diseases. In this review, we describe two important approaches for the analysis of diverse clinical datasets, namely the centralized model and federated model. We compare and contrast the strengths and weaknesses inherent in each model and present recent progress in methodologies and their associated challenges. Finally, we present an outlook on the opportunities that both models hold for the future analysis of clinical data.


Asunto(s)
Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Conjuntos de Datos como Asunto
4.
Genome Biol ; 24(1): 204, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697426

RESUMEN

Growing regulatory requirements set barriers around genetic data sharing and collaborations. Moreover, existing privacy-aware paradigms are challenging to deploy in collaborative settings. We present COLLAGENE, a tool base for building secure collaborative genomic data analysis methods. COLLAGENE protects data using shared-key homomorphic encryption and combines encryption with multiparty strategies for efficient privacy-aware collaborative method development. COLLAGENE provides ready-to-run tools for encryption/decryption, matrix processing, and network transfers, which can be immediately integrated into existing pipelines. We demonstrate the usage of COLLAGENE by building a practical federated GWAS protocol for binary phenotypes and a secure meta-analysis protocol. COLLAGENE is available at https://zenodo.org/record/8125935 .


Asunto(s)
Genómica , Privacidad , Análisis de Datos , Difusión de la Información , Fenotipo , Metaanálisis como Asunto
5.
JMIR Med Inform ; 11: e48030, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943585

RESUMEN

BACKGROUND: Investigating low-prevalence diseases such as multiple sclerosis is challenging because of the rather small number of individuals affected by this disease and the scattering of real-world data across numerous data sources. These obstacles impair data integration, standardization, and analysis, which negatively impact the generation of significant meaningful clinical evidence. OBJECTIVE: This study aims to present a comprehensive, research question-agnostic, multistakeholder-driven end-to-end data analysis pipeline that accommodates 3 prevalent data-sharing streams: individual data sharing, core data set sharing, and federated model sharing. METHODS: A demand-driven methodology is employed for standardization, followed by 3 streams of data acquisition, a data quality enhancement process, a data integration procedure, and a concluding analysis stage to fulfill real-world data-sharing requirements. This pipeline's effectiveness was demonstrated through its successful implementation in the COVID-19 and multiple sclerosis global data sharing initiative. RESULTS: The global data sharing initiative yielded multiple scientific publications and provided extensive worldwide guidance for the community with multiple sclerosis. The pipeline facilitated gathering pertinent data from various sources, accommodating distinct sharing streams and assimilating them into a unified data set for subsequent statistical analysis or secure data examination. This pipeline contributed to the assembly of the largest data set of people with multiple sclerosis infected with COVID-19. CONCLUSIONS: The proposed data analysis pipeline exemplifies the potential of global stakeholder collaboration and underlines the significance of evidence-based decision-making. It serves as a paradigm for how data sharing initiatives can propel advancements in health care, emphasizing its adaptability and capacity to address diverse research inquiries.

6.
Hum Vaccin Immunother ; 8(10): 1431-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22894953

RESUMEN

Despite of growing oncology pipeline, cancer vaccines contribute only to a minor share of total oncology-attributed revenues. This is mainly because of a limited number of approved products and limited sales from products approved under compassionate or via early access entry in smaller and less developed markets. However revenue contribution from these products is extremely limited and it remains to be established whether developers are breaking even or achieving profitability with existing sales. Cancer vaccine field is well recognized for high development costs and risks, low historical rates of investment return and high probability of failures arising in ventures, partnerships and alliances. The cost of reimbursement for new oncology agents is not universally acceptable to payers limiting the potential for a global expansion, market access and reducing probability of commercial success. In addition, the innovation in cancer immunotherapy is currently focused in small and mid-size biotech companies and academic institutions struggling for investment. Existing R&D innovation models are deemed unsustainable in current "value-for-money" oriented healthcare environment. New business models should be much more open to collaborative, networked and federated styles, which could help to outreach global, markets and increase cost-efficiencies across an entire value chain. Lessons learned from some developing countries and especially from South Korea illustrate that further growth of cancer vaccine industry will depends not only on new business models but also will heavily rely on regional support and initiatives from different bodies, such as governments, payers and regulatory bodies.


Asunto(s)
Vacunas contra el Cáncer/economía , Comercio/economía , Países en Desarrollo , Humanos , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA