Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.638
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(2): 481-494.e24, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38194965

RESUMEN

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.


Asunto(s)
Proteínas del Citoesqueleto , Aprendizaje Automático , Adhesión Celular , Citoplasma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Modelos Biológicos
2.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35021065

RESUMEN

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Células Epiteliales/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , Secuencia de Bases , Estudios de Casos y Controles , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Enfermedades Inflamatorias del Intestino/genética , Metotrexato/farmacología , Mutación/genética , Fosforilación/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Piroptosis/efectos de los fármacos , Piroptosis/genética , Reproducibilidad de los Resultados , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
3.
Cell ; 179(1): 120-131.e13, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31539492

RESUMEN

Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.


Asunto(s)
Adhesiones Focales/metabolismo , Dominios y Motivos de Interacción de Proteínas , Talina/química , Talina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Sitios de Unión , Adhesión Celular/fisiología , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Dimerización , Escherichia coli/metabolismo , Humanos , Integrinas/metabolismo , Modelos Moleculares , Unión Proteica , Transducción de Señal/fisiología , Vinculina/metabolismo
4.
Cell ; 173(7): 1770-1782.e14, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906450

RESUMEN

Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Neoplasias de la Próstata/patología , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Inestabilidad Genómica , Humanos , Masculino , Mutación Missense , Estadificación de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Receptor de Muerte Celular Programada 1/inmunología , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Linfocitos T/metabolismo , Linfocitos T/patología , Tomografía Computarizada por Rayos X
5.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839864

RESUMEN

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Asunto(s)
Núcleo Celular/metabolismo , Adhesiones Focales , Neoplasias Pulmonares/secundario , Melanoma/patología , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animales , Roturas del ADN de Doble Cadena , Embrión de Mamíferos/citología , Matriz Extracelular/metabolismo , Femenino , Forminas , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso
6.
Physiol Rev ; 103(3): 2321-2347, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796098

RESUMEN

The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.


Asunto(s)
Contracción Muscular , Músculo Liso , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Miocitos del Músculo Liso , Fenotipo , Integrinas/metabolismo
7.
Physiol Rev ; 103(1): 787-854, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007181

RESUMEN

An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.


Asunto(s)
Canalopatías , Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Humanos , Canal Catiónico TRPC6/metabolismo , Canalopatías/metabolismo , Canales Catiónicos TRPC/metabolismo , Glomérulos Renales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Enfermedades Renales/metabolismo
8.
Annu Rev Cell Dev Biol ; 32: 469-490, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501447

RESUMEN

Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.


Asunto(s)
Movimiento Celular , Adhesiones Focales/metabolismo , Animales , Fenómenos Biomecánicos , Humanos , Modelos Biológicos
9.
Trends Biochem Sci ; 49(6): 494-505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565496

RESUMEN

Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Autofagia , Humanos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química
10.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769437

RESUMEN

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Asunto(s)
Adhesiones Focales , Cinesinas , Microtúbulos , Factores de Intercambio de Guanina Nucleótido Rho , Adhesiones Focales/metabolismo , Microtúbulos/metabolismo , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animales
11.
Mol Cell ; 79(5): 782-796.e6, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32780989

RESUMEN

Enzymes or enzyme complexes can be concentrated in different cellular loci to modulate distinct functional processes in response to specific signals. How cells condense and compartmentalize enzyme complexes for spatiotemporally distinct cellular events is not well understood. Here we discover that specific and tight association of GIT1 and ß-Pix, a pair of GTPase regulatory enzymes, leads to phase separation of the complex without additional scaffolding molecules. GIT1/ß-Pix condensates are modular in nature and can be positioned at distinct cellular compartments, such as neuronal synapses, focal adhesions, and cell-cell junctions, by upstream adaptors. Guided by the structure of the GIT/PIX complex, we specifically probed the role of phase separation of the enzyme complex in cell migration and synapse formation. Our study suggests that formation of modular enzyme complex condensates via phase separation can dynamically concentrate limited quantities of enzymes to distinct cellular compartments for specific and optimal signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal , Animales , Proteínas de Ciclo Celular/química , Proteínas Activadoras de GTPasa/química , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Paxillin/metabolismo , Unión Proteica , Proteínas Recombinantes/metabolismo
12.
J Cell Sci ; 137(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881365

RESUMEN

Endothelial cells lining the blood vessel wall communicate intricately with the surrounding extracellular matrix, translating mechanical cues into biochemical signals. Moreover, vessels require the capability to enzymatically degrade the matrix surrounding them, to facilitate vascular expansion. c-Src plays a key role in blood vessel growth, with its loss in the endothelium reducing vessel sprouting and focal adhesion signalling. Here, we show that constitutive activation of c-Src in endothelial cells results in rapid vascular expansion, operating independently of growth factor stimulation or fluid shear stress forces. This is driven by an increase in focal adhesion signalling and size, with enhancement of localised secretion of matrix metalloproteinases responsible for extracellular matrix remodelling. Inhibition of matrix metalloproteinase activity results in a robust rescue of the vascular expansion elicited by heightened c-Src activity. This supports the premise that moderating focal adhesion-related events and matrix degradation can counteract abnormal vascular expansion, with implications for pathologies driven by unusual vascular morphologies.


Asunto(s)
Matriz Extracelular , Adhesiones Focales , Familia-src Quinasas , Adhesiones Focales/metabolismo , Matriz Extracelular/metabolismo , Humanos , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Animales , Proteína Tirosina Quinasa CSK/metabolismo , Transducción de Señal , Células Endoteliales/metabolismo , Células Endoteliales/patología , Metaloproteinasas de la Matriz/metabolismo
13.
J Cell Sci ; 137(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587458

RESUMEN

Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Movimiento Celular , Proteínas del Citoesqueleto , Unión Proteica , Talina , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Células MCF-7 , Microtúbulos/metabolismo , Fosforilación , Talina/metabolismo
14.
J Cell Sci ; 137(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39034922

RESUMEN

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Transducción de Señal , Humanos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Animales , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Femenino , Microambiente Tumoral , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
15.
J Cell Sci ; 137(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563084

RESUMEN

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Asunto(s)
Adhesiones Focales , Proteínas Activadoras de GTPasa , Mecanotransducción Celular , Proteínas Supresoras de Tumor , Proteínas Señalizadoras YAP , Animales , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimiento Celular , Retroalimentación Fisiológica , Adhesiones Focales/metabolismo , Adhesiones Focales/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mecanotransducción Celular/genética , Neovascularización Fisiológica , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Señalizadoras YAP/metabolismo
16.
J Cell Sci ; 137(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277157

RESUMEN

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Asunto(s)
Actomiosina , Adhesiones Focales , Humanos , Adhesiones Focales/metabolismo , Actomiosina/metabolismo , Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
17.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621002

RESUMEN

The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/ß1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.


Asunto(s)
Actomiosina , Integrina alfa5 , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Proliferación Celular , Integrina alfa5/metabolismo , Mamíferos/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(26): e2218116120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339195

RESUMEN

Integrin-mediated adhesion is essential for metazoan life. Integrin binding to ligand requires an activation step prior to binding ligand that depends on direct binding of talin and kindlin to the ß-integrin cytoplasmic tail and the transmission of force from the actomyosin via talin to the integrin-ligand bonds. However, the affinity of talin for integrin tails is low. It is therefore still unclear how such low-affinity bonds are reinforced to transmit forces up to 10 to 40 pN. In this study, we use single-molecule force spectroscopy by optical tweezers to investigate the mechanical stability of the talin•integrin bond in the presence and absence of kindlin. While talin and integrin alone form a weak and highly dynamic slip bond, the addition of kindlin-2 induces a force-independent, ideal talin•integrin bond, which relies on the steric proximity of and the intervening amino acid sequences between the talin- and kindlin-binding sites in the ß-integrin tail. Our findings show how kindlin cooperates with talin to enable transmission of high forces required to stabilize cell adhesion.


Asunto(s)
Integrinas , Talina , Animales , Talina/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Adhesión Celular
19.
Proc Natl Acad Sci U S A ; 120(15): e2303037120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011205

RESUMEN

Biomolecular condensates are nonmembranous structures that are mainly formed through liquid-liquid phase separation. Tensins are focal adhesion (FA) proteins linking the actin cytoskeleton to integrin receptors. Here, we report that GFP-tagged tensin-1 (TNS1) proteins phase-separate to form biomolecular condensates in cells. Live-cell imaging showed that new TNS1 condensates are budding from the disassembling ends of FAs, and the presence of these condensates is cell cycle dependent. TNS1 condensates dissolve immediately prior to mitosis and rapidly reappear while postmitotic daughter cells establish new FAs. TNS1 condensates contain selected FA proteins and signaling molecules such as pT308Akt but not pS473Akt, suggesting previously unknown roles of TNS1 condensates in disassembling FAs, as the storage of core FA components and the signaling intermediates.


Asunto(s)
Adhesiones Focales , Transducción de Señal , Tensinas , Adhesiones Focales/metabolismo , Proteínas , División Celular , Adhesión Celular
20.
Proc Natl Acad Sci U S A ; 120(8): e2207425120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36800388

RESUMEN

Lysosomal exocytosis is involved in many key cellular processes but its spatiotemporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization. Exocytosis events partially co-appear at focal adhesions (FAs) and their clustering is reduced upon removal of FAs. Changes in membrane tension following a hypo-osmotic shock or treatment with methyl-ß-cyclodextrin were found to increase clustering. To investigate the link between FAs and membrane tension, cells were cultured on adhesive ring-shaped micropatterns, which allow to control the spatial organization of FAs. By using a combination of TIRFM and fluorescence lifetime imaging microscopy (FLIM), we revealed the existence of a radial gradient in membrane tension. By changing the diameter of micropatterned substrates, we further showed that this gradient as well as the extent of exocytosis clustering can be controlled. Together, our data indicate that the spatial clustering of lysosomal exocytosis relies on membrane tension patterning controlled by the spatial organization of FAs.


Asunto(s)
Fenómenos Fisiológicos Celulares , Exocitosis , Membrana Celular/metabolismo , Exocitosis/fisiología , Membranas , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA