Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(20): e2303846121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709920

RESUMEN

Habitat loss and isolation caused by landscape fragmentation represent a growing threat to global biodiversity. Existing theory suggests that the process will lead to a decline in metapopulation viability. However, since most metapopulation models are restricted to simple networks of discrete habitat patches, the effects of real landscape fragmentation, particularly in stochastic environments, are not well understood. To close this major gap in ecological theory, we developed a spatially explicit, individual-based model applicable to realistic landscape structures, bridging metapopulation ecology and landscape ecology. This model reproduced classical metapopulation dynamics under conventional model assumptions, but on fragmented landscapes, it uncovered general dynamics that are in stark contradiction to the prevailing views in the ecological and conservation literature. Notably, fragmentation can give rise to a series of dualities: a) positive and negative responses to environmental noise, b) relative slowdown and acceleration in density decline, and c) synchronization and desynchronization of local population dynamics. Furthermore, counter to common intuition, species that interact locally ("residents") were often more resilient to fragmentation than long-ranging "migrants." This set of findings signals a need to fundamentally reconsider our approach to ecosystem management in a noisy and fragmented world.


Asunto(s)
Biodiversidad , Ecosistema , Dinámica Poblacional , Conservación de los Recursos Naturales , Modelos Biológicos , Animales , Modelos Teóricos
2.
Hum Mol Genet ; 33(17): 1540-1553, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-38796713

RESUMEN

BACKGROUND: Genetic abnormalities like Y chromosome microdeletions are implicated in male infertility. This study investigated the association of azoospermia factor (AZF) region microdeletions with unsuccessful assisted reproductive techniques (ART), including in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). METHODS: This cross-sectional analysis study examined 80 Iranian oligospermic men (mean age 34 years) with prior failed ICSI and IVF cycles (IR.IAU.TNB.REC.1401.041). Semen analysis evaluated quantity/quality parameters based on World Health Organization guidelines. Participants were stratified by sperm DNA fragmentation (SDF) levels into: control (SDF < 15%, n = 20), mild elevation (15% ≤ SDF ≤ 30%, n = 60), and high (SDF > 30%, n = 20). Multiplex PCR mapped AZF microdeletions in the high SDF group. The AZF-associated genes were selected by RNA Seq analysis, and the candidate genes were checked for expression level by real-time PCR. RESULTS: High SDF individuals exhibited poorer semen metrics, including 69% lower sperm concentration (P = 0.04) than those without SDF. Of this subset, 45% (9/20 men) harboured predominately AZF microdeletions. Men with AZF microdeletions showed higher SDF (32% vs 21%, P = 0.02) and altered AZF-associated genes expression. As USP9Y 3-fold, UTY 1.3-fold, and BPY2 1-fold revealed up-regulation, while IQCF1 8-fold, CDY 6.5-fold, DAZ 6-fold, and DDX3Y 1-fold underwent down-regulation. The PAWP gene was also down-regulated (5.7-fold, P = 0.029) in the IVF/ICSI failure group. CONCLUSION: AZF microdeletions significantly impact male infertility and ART outcomes. High SDF individuals exhibited poorer semen metrics, with 45% AZF microdeletions. These microdeletions altered AZF-associated genes expression, affecting fertility mediator PAWP independently. Dual AZF and SDF screening enables personalized management in severe male infertility, potentially explaining IVF/ICSI failures.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Y , Infertilidad Masculina , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual , Humanos , Masculino , Cromosomas Humanos Y/genética , Infertilidad Masculina/genética , Adulto , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Estudios Transversales , Análisis de Semen , Inyecciones de Esperma Intracitoplasmáticas , Fertilización In Vitro , Técnicas Reproductivas Asistidas , Fragmentación del ADN , Espermatozoides/metabolismo , Espermatozoides/patología , Irán , Fertilidad/genética , Regulación de la Expresión Génica/genética , Recuento de Espermatozoides
3.
J Virol ; 98(2): e0184223, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38179942

RESUMEN

Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. A growing number of studies have reported that autophagy participates in infection by a variety of viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe financial losses to the global swine industry. Although much research has shown that PRRSV triggers autophagy for its own benefits, the exact molecular mechanisms involved in PRRSV-triggered autophagy remain to be fully elucidated. In the current study, we demonstrated that PRRSV infection significantly induced Golgi apparatus (GA) fragmentation, which promoted autophagy to facilitate viral self-replication. Mechanistically, PRRSV nonstructural protein 2 was identified to interact with and degrade the Golgi reassembly and stacking protein 65 dependent on its papain-like cysteine protease 2 activity, resulting in GA fragmentation. Upon GA fragmentation, GA-resident Ras-like protein in brain 2 was disassociated from Golgi matrix protein 130 and subsequently bound to unc-51 like autophagy activating kinase 1 (ULK1), which enhanced phosphorylation of ULK1 and promoted autophagy. Taken together, all these results expand the knowledge of PRRSV-triggered autophagy as well as PRRSV pathogenesis to support novel potential avenues for prevention and control of the virus. More importantly, these results provide the detailed mechanism of GA fragmentation-mediated autophagy, deepening the understanding of autophagic processes.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious swine disease affecting pig farming worldwide. Despite that numerous studies have shown that PRRSV triggers autophagy for its self-replication, how PRRSV induces autophagy is incompletely understood. Here, we identify that PRRSV Nsp2 degrades GRASP65 to induce GA fragmentation, which dissociates RAB2 from GM130 and activates RAB2-ULK1-mediated autophagy to enhance viral replication. This work expands our understanding of PRRSV-induced autophagy and PRRSV replication, which is beneficial for anti-viral drug development.


Asunto(s)
Autofagia , Aparato de Golgi , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Línea Celular , Aparato de Golgi/patología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Replicación Viral
4.
Genomics ; 116(4): 110876, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849019

RESUMEN

Timely accurate and cost-efficient detection of colorectal cancer (CRC) is of great clinical importance. This study aims to establish prediction models for detecting CRC using plasma cell-free DNA (cfDNA) fragmentomic features. Whole-genome sequencing (WGS) was performed on cfDNA from 620 participants, including healthy individuals, patients with benign colorectal diseases and CRC patients. Using WGS data, three machine learning methods were compared to build prediction models for the stratification of CRC patients. The optimal model to discriminate CRC patients of all stages from healthy individuals achieved a sensitivity of 92.31% and a specificity of 91.14%, while the model to separate early-stage CRC patients (stage 0-II) from healthy individuals achieved a sensitivity of 88.8% and a specificity of 96.2%. Additionally, the cfDNA fragmentation profiles reflected disease-specific genomic alterations in CRC. Overall, this study suggests that cfDNA fragmentation profiles may potentially become a noninvasive approach for the detection and stratification of CRC.


Asunto(s)
Neoplasias Colorrectales , Detección Precoz del Cáncer , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/diagnóstico , Masculino , Persona de Mediana Edad , Femenino , Detección Precoz del Cáncer/métodos , Anciano , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Aprendizaje Automático , Adulto , Secuenciación Completa del Genoma/métodos , Fragmentación del ADN
5.
J Lipid Res ; 65(6): 100567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795862

RESUMEN

Lipids play pivotal roles in an extensive range of metabolic and physiological processes. In recent years, the convergence of trapped ion mobility spectrometry and MS has enabled 4D-lipidomics, a highly promising technology for comprehensive lipid analysis. 4D-lipidomics assesses lipid annotations across four distinct dimensions-retention time, collisional cross section, m/z (mass-to-charge ratio), and MS/MS spectra-providing a heightened level of confidence in lipid annotation. These advantages prove particularly valuable when investigating complex disorders involving lipid metabolism, such as adrenoleukodystrophy (ALD). ALD is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) due to pathogenic variants in the ABCD1 gene. A comprehensive 4D-lipidomics strategy of ALD fibroblasts demonstrated significant elevations of various lipids from multiple classes. This indicates that the changes observed in ALD are not confined to a single lipid class and likely impacts a broad spectrum of lipid-mediated physiological processes. Our findings highlight the incorporation of mainly saturated and monounsaturated VLCFA variants into a range of lipid classes, encompassing phosphatidylcholines, triacylglycerols, and cholesterol esters. These include ultra-long-chain fatty acids with a length of up to thirty carbon atoms. Lipid species containing C26:0 and C26:1 were the most frequently detected VLCFA lipids in our study. Furthermore, we report a panel of 121 new candidate biomarkers in fibroblasts, exhibiting significant differentiation between controls and individuals with ALD. In summary, this study demonstrates the capabilities of a 4D-lipid profiling workflow in unraveling novel insights into the intricate lipid modifications associated with metabolic disorders like ALD.


Asunto(s)
Adrenoleucodistrofia , Espectrometría de Movilidad Iónica , Lipidómica , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/genética , Humanos , Lipidómica/métodos , Lípidos/análisis , Metabolismo de los Lípidos
6.
J Proteome Res ; 23(2): 585-595, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38231888

RESUMEN

LC-MS-based N-glycosylation profiling in four human serum IgG subclasses (IgG1, IgG2, IgG3, and IgG4) often requires additional affinity-based enrichment of specific IgG subclasses, owing to the high amino acid sequence similarity of Fc glycopeptides among subclasses. Notably, for IgG4 and the major allotype of IgG3, the glycopeptide precursors share identical retention time and mass and therefore cannot be distinguished based on precursor or glycan fragmentation. Here, we developed a parallel reaction monitoring (PRM)-based method for quantifying Fc glycopeptides through combined transitions generated from both glycosidic and peptide bond fragmentation. The latter enables the subpopulation of IgG3 and IgG4 to be directly distinguished according to mass differences without requiring further enrichment of specific IgG subclasses. In addition, a multinozzle electrospray emitter coupled to a capillary flow liquid chromatograph was used to increase the robustness and detection sensitivity of the method for low-yield peptide backbone fragment ions. The gradient was optimized to decrease the overall run time and make the method compatible with high-throughput analysis. We demonstrated that this method can be used to effectively monitor the relative levels of 13 representative glycoforms, with a good limit of detection for individual IgG subclasses.


Asunto(s)
Glicopéptidos , Cromatografía Líquida con Espectrometría de Masas , Humanos , Cromatografía Liquida/métodos , Glicopéptidos/análisis , Espectrometría de Masas en Tándem/métodos , Inmunoglobulina G/análisis , Fragmentos de Péptidos , Polisacáridos
7.
J Proteome Res ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177337

RESUMEN

The amino acid position within a histone sequence and the chemical nature of post-translational modifications (PTMs) are essential for elucidating the "Histone Code". Previous work has shown that PTMs induce specific biological responses and are good candidates as biomarkers for diagnostics. Here, we evaluate the analytical advantages of trapped ion mobility (TIMS) with parallel accumulation-serial fragmentation (PASEF) and tandem mass spectrometry (MS/MS) for bottom-up proteomics of model cancer cells. The study also considered the use of nanoliquid chromatography (LC) and traditional methods: LC-TIMS-PASEF-ToF MS/MS vs nLC-TIMS-PASEF-ToF MS/MS vs nLC-MS/MS. The addition of TIMS and PASEF-MS/MS increased the number of detected peptides due to the added separation dimension. All three methods showed high reproducibility and low RSD in the MS domain (<5 ppm). While the LC, nLC and TIMS separations showed small RSD across samples, the accurate mobility (1/K0) measurements (<0.6% RSD) increased the confidence of peptide assignments. Trends were observed in the retention time and mobility concerning the number and type of PTMs (e.g., ac, me1-3) and their corresponding unmodified, propionylated peptide that aided in peptide assignment. Mobility separation permitted the annotation of coeluting structural and positional isomers and compared with nLC-MS/MS showed several advantages due to reduced chemical noise.

8.
BMC Genomics ; 25(1): 227, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429743

RESUMEN

BACKGROUND: Hybridization capture-based targeted next generation sequencing (NGS) is gaining importance in routine cancer clinical practice. DNA library preparation is a fundamental step to produce high-quality sequencing data. Numerous unexpected, low variant allele frequency calls were observed in libraries using sonication fragmentation and enzymatic fragmentation. In this study, we investigated the characteristics of the artifact reads induced by sonication and enzymatic fragmentation. We also developed a bioinformatic algorithm to filter these sequencing errors. RESULTS: We used pairwise comparisons of somatic single nucleotide variants (SNVs) and insertions and deletions (indels) of the same tumor DNA samples prepared using both ultrasonic and enzymatic fragmentation protocols. Our analysis revealed that the number of artifact variants was significantly greater in the samples generated using enzymatic fragmentation than using sonication. Most of the artifacts derived from the sonication-treated libraries were chimeric artifact reads containing both cis- and trans-inverted repeat sequences of the genomic DNA. In contrast, chimeric artifact reads of endonuclease-treated libraries contained palindromic sequences with mismatched bases. Based on these distinctive features, we proposed a mechanistic hypothesis model, PDSM (pairing of partial single strands derived from a similar molecule), by which these sequencing errors derive from ultrasonication and enzymatic fragmentation library preparation. We developed a bioinformatic algorithm to generate a custom mutation "blacklist" in the BED region to reduce errors in downstream analyses. CONCLUSIONS: We first proposed a mechanistic hypothesis model (PDSM) of sequencing errors caused by specific structures of inverted repeat sequences and palindromic sequences in the natural genome. This new hypothesis predicts the existence of chimeric reads that could not be explained by previous models, and provides a new direction for further improving NGS analysis accuracy. A bioinformatic algorithm, ArtifactsFinder, was developed and used to reduce the sequencing errors in libraries produced using sonication and enzymatic fragmentation.


Asunto(s)
Artefactos , Genoma Humano , Humanos , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , ADN de Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
BMC Genomics ; 25(1): 755, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095713

RESUMEN

BACKGROUND: China is the hotspot of global freshwater crab diversity, but their wild populations are facing severe pressures associated with anthropogenic factors, necessitating the need to map their taxonomic and genetic diversity and design conservation policies. RESULTS: Herein, we sequenced the mitochondrial genome of a Chinese freshwater crab species Bottapotamon fukienense, and found that it is fragmented into two chromosomes. We confirmed that fragmentation was not limited to a single specimen or population. Chromosome 1 comprised 15,111 base pairs (bp) and there were 26 genes and one pseudogene (pseudo-nad1) encoded on it. Chromosome 2 comprised 8,173 bp and there were 12 genes and two pseudogenes (pseudo-trnL2 and pseudo-rrnL) encoded on it. Combined, they comprise the largest mitogenome (23,284 bp) among the Potamidae. Bottapotamon was the only genus in the Potamidae dataset exhibiting rearrangements of protein-coding genes. Bottapotamon fukienense exhibited average rates of sequence evolution in the dataset and did not differ in selection pressures from the remaining Potamidae. CONCLUSIONS: This is the first experimentally confirmed fragmentation of a mitogenome in crustaceans. While the mitogenome of B. fukienense exhibited multiple signs of elevated mitogenomic architecture evolution rates, including the exceptionally large size, duplicated genes, pseudogenisation, rearrangements of protein-coding genes, and fragmentation, there is no evidence that this is matched by elevated sequence evolutionary rates or changes in selection pressures.


Asunto(s)
Genoma Mitocondrial , Animales , Cromosomas/genética , Filogenia , Evolución Molecular , Braquiuros/genética , Braquiuros/clasificación , Seudogenes
10.
Ecol Lett ; 27(6): e14459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877751

RESUMEN

Recent international agreements have strengthened and expanded commitments to protect and restore native habitats for biodiversity protection ("area-based biodiversity conservation"). Nevertheless, biodiversity conservation is hindered because how such commitments should be implemented has been strongly debated, which can lead to suboptimal habitat protection decisions. We argue that, despite the debates, there are three essential principles for area-based biodiversity conservation. These principles are related to habitat geographic coverage, amount, and connectivity. They emerge from evidence that, while large areas of nature are important and must be protected, conservation or restoration of multiple small habitat patches is also critical for global conservation, particularly in regions with high land use. We contend that the many area-based conservation initiatives expected in the coming decades should follow the principles we identify, regardless of ongoing debates. Considering the importance of biodiversity for maintenance of ecosystem services, we suggest that this would bring widespread societal benefits.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Ecosistema
11.
Curr Issues Mol Biol ; 46(3): 2678-2700, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534785

RESUMEN

Mucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme. Some of these types (severe forms of MPS types I and II, MPS III, and MPS VII) are characterized by extensive central nervous system disorders. The aim of this work was to identify, using transcriptomic methods, organelle-related genes whose expression levels are changed in neuronopathic types of MPS compared to healthy cells while remaining unchanged in non-neuronopathic types of MPS. The study was conducted with fibroblast lines derived from patients with neuronopathic and non-neuronopathic types of MPS and control (healthy) fibroblasts. Transcriptomic analysis has identified genes related to cellular organelles whose expression is altered. Then, using fluorescence and electron microscopy, we assessed the morphology of selected structures. Our analyses indicated that the genes whose expression is affected in neuronopathic MPS are often associated with the structures or functions of the cell nucleus, endoplasmic reticulum, or Golgi apparatus. Electron microscopic studies confirmed disruptions in the structures of these organelles. Special attention was paid to up-regulated genes, such as PDIA3 and MFGE8, and down-regulated genes, such as ARL6IP6, ABHD5, PDE4DIP, YIPF5, and CLDN11. Of particular interest is also the GM130 (GOLGA2) gene, which encodes golgin A2, which revealed an increased expression in neuronopathic MPS types. We propose to consider the levels of mRNAs of these genes as candidates for biomarkers of neurodegeneration in MPS. These genes may also become potential targets for therapies under development for neurological disorders associated with MPS and candidates for markers of the effectiveness of these therapies. Although fibroblasts rather than nerve cells were used in this study, it is worth noting that potential genetic markers characteristic solely of neurons would be impractical in testing patients, contrary to somatic cells that can be relatively easily obtained from assessed persons.

12.
Am Nat ; 203(6): 655-667, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781529

RESUMEN

AbstractAnthropogenic fragmentation of habitat is considered to be a critical factor contributing to the decline of species. However, a general consensus on the degree to which habitat loss and what has been called "habitat fragmentation per se" contribute to the loss of species diversity has not yet emerged. For empirical and theoretical reasons the topic has recently attracted renewed attention, thus reviving the "single large or several small" (SLOSS) debate. To study the effect of fragmentation per se, we use a spatially explicit and continuous, competitively neutral simulation model with immigration from a regional pool. The model accounts for the influence of ecological drift and intrafragment species clustering (due to limited dispersal) on local (plot) and global (landscape) diversity. We find that fragmentation increases global diversity but decreases local diversity, prominently so if fragments become more isolated. Cluster formation is a key mechanism reducing local diversity. By adding external disturbance events that lead to the occasional extinction of entire communities in habitat fragments, we show that the combined effect of such extinctions and cluster formation can create nonlinear interactive effects of fragmentation and fragment isolation on diversity patterns. We conclude that while in most cases fragmentation will decrease local and increase landscape diversity, universal predictions concerning the SLOSS debate should be taken with care.


Asunto(s)
Biodiversidad , Ecosistema , Extinción Biológica , Modelos Biológicos , Animales
13.
Am J Physiol Heart Circ Physiol ; 327(2): H521-H532, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38904853

RESUMEN

Williams-Beuren syndrome (WBS) is a rare genetic condition caused by a chromosomal microdeletion at 7q11.23. It is a multisystem disorder characterized by distinct facies, intellectual disability, and supravalvar aortic stenosis (SVAS). Those with WBS are at increased risk of sudden death, but mechanisms underlying this remain poorly understood. We recently demonstrated autonomic abnormalities in those with WBS that are associated with increased susceptibility to arrhythmia and sudden cardiac death (SCD). A recently introduced method for heart rate variability (HRV) analysis called "heart rate fragmentation" (HRF) correlates with adverse cardiovascular events (CVEs) and death in studies where heart rate variability (HRV) failed to identify high-risk subjects. Some argue that HRF quantifies nonautonomic cardiovascular modulators. We, therefore, sought to apply HRF analysis to a WBS cohort to determine 1) if those with WBS show differences in HRF compared with healthy controls and 2) if HRF helps characterize HRV abnormalities in those with WBS. Similar to studies of those with coronary artery disease (CAD) and atherosclerosis, we found significantly higher HRF (4 out of 7 metrics) in those with WBS compared with healthy controls. Multivariable analyses showed a weak-to-moderate association between HRF and HRV, suggesting that HRF may reflect HRV characteristics not fully captured by traditional HRV metrics (autonomic markers). We also introduce a new metric inspired by HRF methodology, significant acute rate drop (SARD), which may detect vagal activity more directly. HRF and SARD may improve on traditional HRV measures to identify those at greatest risk for SCD both in those with WBS and in other populations.NEW & NOTEWORTHY This work is the first to apply heart rate fragmentation analyses to individuals with Williams syndrome and posits that the heart rate fragmentation parameter W3 may enable detection and investigation of phenomena underlying the proarrhythmic short-long-short RR interval sequences paradigm known to precede ventricular fibrillation and ventricular tachycardia. It also forwards a novel method for quantifying sinus arrhythmia and sinus pauses that likely correlate with parasympathetic activity.


Asunto(s)
Muerte Súbita Cardíaca , Frecuencia Cardíaca , Síndrome de Williams , Síndrome de Williams/fisiopatología , Síndrome de Williams/genética , Síndrome de Williams/complicaciones , Humanos , Muerte Súbita Cardíaca/etiología , Femenino , Masculino , Adolescente , Adulto , Adulto Joven , Estudios de Casos y Controles , Factores de Riesgo , Sistema Nervioso Autónomo/fisiopatología , Niño , Medición de Riesgo , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/genética , Arritmias Cardíacas/diagnóstico
14.
Biochem Biophys Res Commun ; 732: 150407, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39033555

RESUMEN

To characterise the glucose-induced protein fragments by MALDI-TOF MS analysis, we compared data for samples from Escherichia coli cultured in media with or without glucose. Characteristic peaks were observed in the presence of glucose, and MS/MS revealed Asr-specific fragments. The amino acid sequences of the fragments suggested sequence-specific proteolysis. Blast-analysis revealed that numerous Enterobacterales harbored genes encoding Asr as well as E. coli. Here, we analysed 32 strains from 20 genera and 25 species of seven Enterobacterales families. We did not detect changes in the mass spectra of four strains of Morganellaceae lacking asr, whereas peaks of Asr-specific fragments were detected in the other 28 strains. We therefore concluded that the induction of Asr production in the presence of glucose is common among the Enterobacterales, except for certain Morganellaceae species. In members of family Budviciaceae, unfragmented Asr was detected. Molecular genetic information suggested that the amino acid sequences of Asr homologs are diverse, with fragments varying in number and size, indicating that Asr may serve as a discriminative biomarker for identifying Enterobacterales species.

15.
BMC Plant Biol ; 24(1): 381, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724902

RESUMEN

The wild relatives of cultivated apples would be an ideal source of diversity for breeding new varieties, which could potentially grow in diverse habitats shaped by climate change. However, there is still a lack of knowledge about the potential distribution of these species. The aim of the presented work was the understand the impacts of climate change on the potential distribution and habitat fragmentation of Caucasian crab apple (Malus orientalis Uglitzk.) and the designation of areas of high interest according to climatic conditions. We used the MaxEnt models and Morphological-Spatial Analysis (MSPA) to evaluate the potential distribution, suitability changes, habitat fragmentation, and connectivity throughout the species range in Turkey, Armenia, Georgia, Russia, and Iran. The results revealed that the potentially suitable range of M. orientalis encompasses 858,877 km², 635,279 km² and 456,795 km² under the present, RCP4.5 and RCP8.5 scenario, respectively. The range fragmentation analysis demonstrated a notable shift in the edge/core ratio, which increased from 50.95% in the current scenario to even 67.70% in the future. The northern part of the range (Armenia, northern Georgia, southern Russia), as well as the central and western parts of Hyrcania will be a core of the species range with suitable habitats and a high connectivity between M. orientalis populations and could work as major refugia for the studied species. However, in the Zagros and central Turkey, the potential range will shrink due to the lack of suitable climatic conditions, and the edge/core ratio will grow. In the southern part of the range, a decline of M. orientalis habitats is expected due to changing climatic conditions. The future outlook suggests that the Hyrcanian forest and the Caucasus region could serve as important refuges for M. orientalis. This study helps to understand spatial changes in species' range in response to climate change and can help develop conservation strategies. This is all the more important given the species' potential use in future breeding programs aimed at enriching the gene pool of cultivated apple varieties.


Asunto(s)
Cambio Climático , Ecosistema , Malus , Malus/genética , Turquía , Georgia (República) , Federación de Rusia , Irán , Dispersión de las Plantas , Armenia
16.
Artículo en Inglés | MEDLINE | ID: mdl-39096403

RESUMEN

INTRODUCTION: Fragmentation of care (FC, the receipt of care at > 1 institution) has been shown to negatively impact cancer outcomes. Given the multimodal nature of breast cancer treatment, we sought to identify factors associated with FC and its effects on survival of breast cancer patients. METHODS: A retrospective analysis was performed of surgically treated, stage I-III breast cancer patients in the 2004-2020 National Cancer Database, excluding neoadjuvant therapy recipients. Patients were stratified into two groups: FC or non-FC care. Treatment delay was defined as definitive surgery > 60 days after diagnosis. Multivariable logistic regression was performed to identify factors predictive of FC, and survival was compared using Kaplan-Meier and multivariable Cox proportional hazards methods. RESULTS: Of the 531,644 patients identified, 340,297 (64.0%) received FC. After adjustment, FC (OR 1.27, 95% CI 1.25-1.29) was independently associated with treatment delay. Factors predictive of FC included Hispanic ethnicity (OR 1.04, 95% CI: 1.01-1.07), treatment at comprehensive community cancer programs (OR 1.06, 95% CI: 1.03-1.08) and integrated network cancer programs (OR 1.55, 95% CI: 1.51-1.59), AJCC stage II (OR 1.06, 95% CI 1.05-1.07) and stage III tumors (OR 1.06, 95% CI: 1.02-1.10), and HR + /HER2 + tumors (OR 1.05, 95% CI: 1.02-1.07). Treatment delay was independently associated with increased risk of mortality (HR 1.23, 95% CI 1.20-1.26), whereas FC (HR 0.87, 95% CI 0.86-0.88) showed survival benefit. CONCLUSIONS: While treatment delay negatively impacts survival in breast cancer patients, our findings suggest FC could be a marker for multispecialty care that may mitigate some of these effects.

17.
J Comput Chem ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946399

RESUMEN

Intermolecular interactions with polycyclic aromatic hydrocarbons (PAHs) represent an important area of physisorption studies. These investigations are often hampered by a size of interacting PAHs, which makes the calculation prohibitively expensive. Therefore, methods designed to deal with large molecules could be helpful to reduce the computational costs of such studies. Recently we have introduced a new systematic approach for the molecular fragmentation of PAHs, denoted as AROFRAG, which decomposes a large PAH molecule into a set of predefined small PAHs with a benzene ring being the smallest unbreakable unit, and which in conjunction with the Molecules-in-Molecules (MIM) approach provides an accurate description of total molecular energies. In this contribution we propose an extension of the AROFRAG, which provides a description of intermolecular interactions for complexes composed of PAH molecules. The examination of interaction energy partitioning for various test cases shows that the AROFRAG3 model connected with the MIM approach accurately reproduces all important components of the interaction energy. An additional important finding in our study is that the computationally expensive long-range electron-correlation part of the interaction energy, that is, the dispersion component, is well described at lower AROFRAG levels even without MIM, which makes the latter models interesting alternatives to existing methods for an accurate description of the electron-correlated part of the interaction energy.

18.
J Neurosci Res ; 102(1): e25268, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284850

RESUMEN

Sleep fragmentation (SF), which refers to discontinuous and fragmented sleep, induces cognitive impairment and anxiety-like behavior in mice. However, whether SF can affect motor capability in healthy young wild-type mice and the underlying mechanisms remain unknown. We performed seven days of sleep fragmentation (SF 7d) interventions in young wild-type male mice. While SF mice experienced regular sleep disruption between Zeitgeber time (ZT) 0-12, control mice were allowed to have natural sleep (NS) cycles. Homecage analysis and conventional behavioral tests were conducted to assess the behavioral alterations in behavioral patterns in general and motor-related behaviors. Sleep structures and the power spectrum of electroencephalograms (EEGs) were compared between SF 7d and NS groups. Neuronal activation was measured using c-Fos immunostaining and quantified in multiple brain regions. SF of 7 days significantly decreased bouts of rearing and sniffing and the duration of rearing and impaired motor coordination. An increase in the total sleep time and a decrease in wakefulness between ZT12-24 was found in SF 7d mice. In SF 7d mice, EEG beta1 power was increased in rapid eye movement (REM) sleep while theta power was decreased during wakefulness. SF 7d resulted in significant suppression in c-Fos (+) cell counts in the motor cortex and hippocampus but an increase in c-Fos (+) cell counts in the substantia nigra pars compacta (SNc). In summary, SF 7d suppressed explorative behaviors and impaired motor coordination as compared to NS. EEG power and altered neuronal activity detected by c-Fos staining might contribute to the behavioral changes.


Asunto(s)
Conducta Exploratoria , Privación de Sueño , Masculino , Animales , Ratones , Sueño , Ansiedad , Recuento de Células , Proteínas Proto-Oncogénicas c-fos
19.
Proc Biol Sci ; 291(2023): 20240866, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38808444

RESUMEN

Patterns of habitat use directly influence a species' fitness, yet for many species an individual's age can influence patterns of habitat use. However, in tropical rainforests, which host the greatest terrestrial species diversity, little is known about how age classes of different species use different adjacent habitats of varying quality. We use long-term mist net data from the Amazon rainforest to assess patterns of habitat use among adult, adolescent (teenage) and young understory birds in forest fragments, primary and secondary forest at the Biological Dynamics of Forest Fragments Project in Brazil. Insectivore adults were most common in primary forest, adolescents were equally likely in primary and secondary forest, and all ages were the least common in forest fragments. In contrast to insectivores, frugivores and omnivores showed no differences among all three habitat types. Our results illustrate potential ideal despotic distributions among breeding populations of some guilds of understory birds where adult insectivores may competitively exclude adolescent individuals from primary forest. Secondary forest recovery appears to hold promise as a breeding habitat for frugivore and omnivore species but only as a pre-breeding habitat for insectivores, but as the forest ages, the demographic structure of bird populations should match that of primary forest.


Asunto(s)
Aves , Ecosistema , Bosque Lluvioso , Animales , Aves/fisiología , Brasil , Factores de Edad , Conducta Alimentaria
20.
Proc Biol Sci ; 291(2023): 20232604, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807521

RESUMEN

Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.


Asunto(s)
Flores , Polen , Polinización , Abejas/fisiología , Animales , Ecosistema , Pradera , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA