Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 696
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38741270

RESUMEN

This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer's disease.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Conectoma/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Cognición/fisiología , Anciano , Persona de Mediana Edad , Aprendizaje Profundo , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/fisiopatología , Adulto
2.
Chemistry ; 30(43): e202400977, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693865

RESUMEN

We describe early and recent advances in the fascinating field of combined magnetic and optical properties of inorganic coordination compounds and in particular of 3d-4f single molecule magnets. We cover various applied techniques which allow for the correlation of results obtained in the frequency and time domain in order to highlight the specific properties of these compounds and the future challenges towards multidimensional spectroscopic tools. An important point is to understand the details of the interplay of magnetic and optical properties through performing time-resolved studies in the presence of external fields especially magnetic ones. This will enable further exploration of this fundamental interactions i. e. the two components of electromagnetic radiation influencing optical properties.

3.
J Microsc ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984663

RESUMEN

The wavenumber nonlinearity leads to blurred reconstructed images in spectral-domain optical coherence tomography (SDOCT). In this work, a wavenumber-linearisation method without calibration devices is presented, based on the fact that the difference between the phases of adjacent peak and valley points is equal to π $\pi $ . The theoretical model is derived, and the efficacy of the method was proven by acquiring SDOCT data from TiO2 phantom and zebrafish. The results exhibit the superior performance of our method. Compared with the linear phase-based method, the resolution could be improved at least a factor of 2. Compared with the polynomial fitting method, the resolution could also be improved by nearly half.

4.
Europace ; 26(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38833626

RESUMEN

AIMS: Successful ventricular arrhythmia (VA) ablation requires identification of functionally critical sites during contact mapping. Estimation of the peak frequency (PF) component of the electrogram (EGM) may improve correct near-field (NF) annotation to identify circuit segments on the mapped surface. In turn, assessment of NF and far-field (FF) EGMs may delineate the three-dimensional path of a ventricular tachycardia (VT) circuit. METHODS AND RESULTS: A proprietary NF detection algorithm was applied retrospectively to scar-related re-entry VT maps and compared with manually reviewed maps employing first deflection (FDcorr) for VT activation maps and last deflection (LD) for substrate maps. Ventricular tachycardia isthmus location and characteristics mapped with FDcorr vs. NF were compared. Omnipolar low-voltage areas, late activating areas, and deceleration zones (DZ) in LD vs. NF substrate maps were compared. On substrate maps, PF estimation was compared between isthmus and bystander sites. Activation mapping with entrainment and/or VT termination with radiofrequency (RF) ablation confirmed critical sites. Eighteen patients with high-density VT activation and substrate maps (55.6% ischaemic) were included. Near-field detection correctly located critical parts of the circuit in 77.7% of the cases compared with manually reviewed VT maps as reference. In substrate maps, NF detection identified deceleration zones in 88.8% of cases, which overlapped with FDcorr VT isthmus in 72.2% compared with 83.3% overlap of DZ assessed by LD. Applied to substrate maps, PF as a stand-alone feature did not differentiate VT isthmus sites from low-voltage bystander sites. Omnipolar voltage was significantly higher at isthmus sites with longer EGM durations compared with low-voltage bystander sites. CONCLUSION: The NF algorithm may enable rapid high-density activation mapping of VT circuits in the NF of the mapped surface. Integrated assessment and combined analysis of NF and FF EGM-components could support characterization of three-dimensional VT circuits with intramural segments. For scar-related substrate mapping, PF as a stand-alone EGM feature did not enable the differentiation of functionally critical sites of the dominant VT from low-voltage bystander sites in this cohort.


Asunto(s)
Algoritmos , Ablación por Catéter , Técnicas Electrofisiológicas Cardíacas , Taquicardia Ventricular , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/cirugía , Taquicardia Ventricular/diagnóstico , Humanos , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Femenino , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Potenciales de Acción , Anciano , Frecuencia Cardíaca , Valor Predictivo de las Pruebas , Procesamiento de Señales Asistido por Computador
5.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38610588

RESUMEN

In this paper, we propose and demonstrate a network analysis optical frequency domain reflectometer (NA-OFDR) for distributed temperature measurements at high spatial (down to ≈3 cm) and temperature resolution. The system makes use of a frequency-stepped, continuous-wave (cw) laser whose output light is modulated using a vector network analyzer. The latter is also used to demodulate the amplitude of the beat signal formed by coherently mixing the Rayleigh backscattered light with a local oscillator. The system is capable of attaining high measurand resolution (≈50 mK at 3-cm spatial resolution) thanks to the high sensitivity of coherent Rayleigh scattering to temperature. Furthermore, unlike the conventional optical-frequency domain reflectometry (OFDR), the proposed system does not rely on the use of a tunable laser and therefore is less prone to limitations related to the laser coherence or sweep nonlinearity. Two configurations are analyzed, both numerically and experimentally, based on either a double-sideband or single-sideband modulated probe light. The results confirm the validity of the proposed approach.

6.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257658

RESUMEN

Low-resistivity objects produce eddy currents when excited with electromagnetic waves of a certain frequency and then generate an eddy electromagnetic field. A portable frequency-domain electromagnetic exploration system can be used to identify this eddy electromagnetic field, and then the low-resistivity objects can be positioned. At present, portable frequency-domain electromagnetic method (FEM) exploration systems use analog signal compensation, and the sounding depth is generally calculated using empirical formulas. In order to improve the rationality of signal compensation, this paper puts forward a digital signal compensation technology, including a device design, an information extraction method, and a primary field calibration method, and makes an exploration prototype based on the digital signal compensation technology. Using 10 nV as the minimum potential detection capability, the sounding depth of the portable FEM was analyzed, and it was found that when investigating a target with the same depth, a lower frequency required a larger emission current. If this could not be met, the sounding depth became smaller, and a phenomenon appeared in which the lower the operating frequency, the smaller the sounding depth. Through the detection of known underground garages, the apparent conductivity and normalized secondary field anomalies with higher sensitivity were obtained, which indicates that the detection system based on the digital signal compensation technology is effective in practical exploration. Via long-distance detection experiments on cars, it was confirmed that the sounding depth of the portable multi-frequency FEM in practical work indeed decreases with a decrease in the operating frequency.

7.
Sensors (Basel) ; 24(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38676247

RESUMEN

Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.


Asunto(s)
Hemoglobinas , Oxígeno , Corteza Prefrontal , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Masculino , Femenino , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Adulto , Reproducibilidad de los Resultados , Oxígeno/metabolismo , Oxígeno/análisis , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Saturación de Oxígeno/fisiología , Adulto Joven , Oxihemoglobinas/metabolismo , Oxihemoglobinas/análisis
8.
Sensors (Basel) ; 24(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931757

RESUMEN

Remote sensing images are inevitably affected by the degradation of haze with complex appearance and non-uniform distribution, which remarkably affects the effectiveness of downstream remote sensing visual tasks. However, most current methods principally operate in the original pixel space of the image, which hinders the exploration of the frequency characteristics of remote sensing images, resulting in these models failing to fully exploit their representation ability to produce high-quality images. This paper proposes a frequency-oriented remote sensing dehazing Transformer named FOTformer, to explore information in the frequency domain to eliminate disturbances caused by haze in remote sensing images. It contains three components. Specifically, we developed a frequency-prompt attention evaluator to estimate the self-correlation of features in the frequency domain rather than the spatial domain, improving the image restoration performance. We propose a content reconstruction feed-forward network that captures information between different scales in features and integrates and processes global frequency domain information and local multi-scale spatial information in Fourier space to reconstruct the global content under the guidance of the amplitude spectrum. We designed a spatial-frequency aggregation block to exchange and fuse features from the frequency domain and spatial domain of the encoder and decoder to facilitate the propagation of features from the encoder stream to the decoder and alleviate the problem of information loss in the network. The experimental results show that the FOTformer achieved a more competitive performance against other remote sensing dehazing methods on commonly used benchmark datasets.

9.
Sensors (Basel) ; 24(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065980

RESUMEN

During underwater image processing, image quality is affected by the absorption and scattering of light in water, thus causing problems such as blurring and noise. As a result, poor image quality is unavoidable. To achieve overall satisfying research results, underwater image denoising is vital. This paper presents an underwater image denoising method, named HHDNet, designed to address noise issues arising from environmental interference and technical limitations during underwater robot photography. The method leverages a dual-branch network architecture to handle both high and low frequencies, incorporating a hybrid attention module specifically designed for the removal of high-frequency abrupt noise in underwater images. Input images are decomposed into high-frequency and low-frequency components using a Gaussian kernel. For the high-frequency part, a Global Context Extractor (GCE) module with a hybrid attention mechanism focuses on removing high-frequency abrupt signals by capturing local details and global dependencies simultaneously. For the low-frequency part, efficient residual convolutional units are used in consideration of less noise information. Experimental results demonstrate that HHDNet effectively achieves underwater image denoising tasks, surpassing other existing methods not only in denoising effectiveness but also in maintaining computational efficiency, and thus HHDNet provides more flexibility in underwater image noise removal.

10.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066029

RESUMEN

Gearbox fault diagnosis is essential in the maintenance and preventive repair of industrial systems. However, in actual working environments, noise frequently interferes with fault signals, consequently reducing the accuracy of fault diagnosis. To effectively address this issue, this paper incorporates the noise attenuation of the DRSN-CW model. A compound fault detection method for gearboxes, integrated with a cross-attention module, is proposed to enhance fault diagnosis performance in noisy environments. First, frequency domain features are extracted from the public dataset by using the fast Fourier transform (FFT). Furthermore, the cross-attention mechanism model is inserted in the optimal position to improve the extraction and recognition rate of global and local fault features. Finally, noise-related features are filtered through soft thresholds within the network structure to efficiently mitigate noise interference. The experimental results show that, compared to existing network models, the proposed model exhibits superior noise immunity and high-precision fault diagnosis performance.

11.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39066154

RESUMEN

The purpose of this study was to compare different high-intensity interval training (HIIT) protocols with different lengths of work and rest times for a single session (all three had identical work-to-rest ratios and exercise intensities) for cardiac auto-regulation using a wearable device. With a randomized counter-balanced crossover, 13 physically active young male adults (age: 19.4 years, BMI: 21.9 kg/m2) were included. The HIIT included a warm-up of at least 5 min and three protocols of 10 s/50 s (20 sets), 20 s/100 s (10 sets), and 40 s/200 s (5 sets), with intensities ranging from 115 to 130% Wattmax. Cardiac auto-regulation was measured using a non-invasive method and a wearable device, including HRV and vascular function. Immediately after the HIIT session, the 40 s/200 s protocol produced the most intense stimulation in R-R interval (Δ-33.5%), ln low-frequency domain (Δ-42.6%), ln high-frequency domain (Δ-73.4%), and ln LF/HF ratio (Δ416.7%, all p < 0.05) compared to other protocols of 10 s/50 s and 20 s/100 s. The post-exercise hypotension in the bilateral ankle area was observed in the 40 s/200 s protocol only at 5 min after HIIT (right: Δ-12.2%, left: Δ-12.6%, all p < 0.05). This study confirmed that a longer work time might be more effective in stimulating cardiac auto-regulation using a wearable device, despite identical work-to-rest ratios and exercise intensity. Additional studies with 24 h measurements of cardiac autoregulation using wearable devices in response to various HIIT protocols are warranted.


Asunto(s)
Frecuencia Cardíaca , Entrenamiento de Intervalos de Alta Intensidad , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Entrenamiento de Intervalos de Alta Intensidad/métodos , Adulto Joven , Frecuencia Cardíaca/fisiología , Adulto , Estudios Cruzados , Corazón/fisiología , Ejercicio Físico/fisiología
12.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400410

RESUMEN

We describe a method for reducing the cost of optical frequency domain reflectometer (OFDR) hardware by replacing two reference channels, including an auxiliary interferometer and a gas cell, with a single channel. To extract useful information, digital signal processing methods were used: digital frequency filtering, as well as empirical mode decomposition. It is shown that the presented method helps to avoid the use of an unnecessary analog-to-digital converter and photodetector, while the OFDR trace is restored by the equal frequency resampling (EFR) algorithm without loss of high resolution and with good measurement repeatability.

13.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38400456

RESUMEN

Distributed optical fibre sensing (DOFS)-based strain measurement systems are now routinely deployed across infrastructure health monitoring applications. However, there are still practical performance and measurement issues associated with the fibre's attachment method, particularly with thermoplastic pipeline materials (e.g., high-density polyethylene, HDPE) and adhesive affixment methods. In this paper, we introduce a new optical fibre installation method that utilises a hot-weld encapsulation approach that fully embeds the fibre onto the pipeline's plastic surface. We describe the development, application and benefits of the new embedment approach (as compared to adhesive methods) and illustrate its practical performance via a full-scale, real-world, dynamic loading trial undertaken on a 1.8 m diameter, 6.4 m long stormwater pipeline structure constructed from composite spiral-wound, steel-reinforced, HDPE pipe. The optical frequency domain reflectometry (OFDR)-based strain results show how the new method improves strain transference and dynamic measurement performance and how the data can be easily interpreted, in a practical context, without the need for complex strain transfer functions. Through the different performance tests, based on UK rail-road network transport loading conditions, we also show how centimetre- to metre-scale strain variations can be clearly resolved at the frequencies and levels consistent with transport- and construction-based, buried infrastructure loading scenarios.

14.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38475102

RESUMEN

This research focuses on the analysis of vibration of a compression ignition engine (CIE), specifically examining potential failures in the Fuel Rail Pressure (FRP) and Mass Air Flow (MAF) sensors, which are critical to combustion control. In line with current trends in mechanical system condition monitoring, we are incorporating information from these sensors to monitor engine health. This research proposes a method to validate the correct functioning of these sensors by analysing vibration signals from the engine. The effectiveness of the proposal is confirmed using real data from a Common Rail Direct Injection (CRDi) engine. Simulations using a GT 508 pressure simulator mimic FRP sensor failures and an adjustable potentiometer manipulates the MAF sensor signal. Vibration data from the engine are processed in MATLAB using frequency domain techniques to investigate the vibration response. The results show that the proposal provides a basis for an efficient predictive maintenance strategy for the MEC engine. The early detection of FRP and MAF sensor problems through a vibration analysis improves engine performance and reliability, minimizing downtime and repair costs. This research contributes to the advancement of monitoring and diagnostic techniques in mechanical engines, thereby improving their efficiency and durability.

15.
Nano Lett ; 23(15): 6883-6891, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467035

RESUMEN

Artificially engineered 2D materials offer unique physical properties for thermal management, surpassing naturally occurring materials. Here, using van der Waals epitaxy, we demonstrate the ability to engineer extremely insulating thermal metamaterials based on atomically thin lattice-mismatched Bi2Se3/MoSe2 superlattices and graphene/PdSe2 heterostructures with exceptional thermal resistances (70-202 m2 K/GW) and ultralow cross-plane thermal conductivities (0.012-0.07 W/mK) at room temperature, comparable to those of amorphous materials. Experimental data obtained using frequency-domain thermoreflectance and low-frequency Raman spectroscopy, supported by tight-binding phonon calculations, reveal the impact of lattice mismatch, phonon-interface scattering, size effects, temperature, and interface thermal resistance on cross-plane heat dissipation, uncovering different thermal transport regimes and the dominant role of long-wavelength phonons. Our findings provide essential insights into emerging synthesis and thermal characterization methods and valuable guidance for the development of large-area heteroepitaxial van der Waals films of dissimilar materials with tailored thermal transport characteristics.

16.
Vet Med (Praha) ; 69(2): 42-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38550620

RESUMEN

Heart rate variability analyses using Poincaré plots can be useful for evaluating the autonomic nervous system function. However, the interpretation of the quantitative indicators of Poincaré plots remains controversial. Thus, few studies have verified the effectiveness of the quantitative indicators in veterinary medicine. This study aimed to verify the reliability of Poincaré plot indicators using pharmacological models in dogs. Four healthy beagles were used in this study. Each dog was treated with propranolol, atropine, and propranolol-atropine to block the sympathetic, parasympathetic, and sympathetic-parasympathetic functions, respectively. The quantitative indicators of the Poincaré plots were calculated based on data from 300 electrocardiogram beats collected before and after the administration of each drug and statistically analysed. The quantitative indicators of the Poincaré plots, such as the standard deviation perpendicular to the major axis (SD1), standard deviation along the major axis (SD2), and SD1 × SD2, significantly decreased after the drug administration in both the parasympathetic and sympathetic-parasympathetic blockade models. However, no significant differences were observed in SD1/SD2 between the groups. The Poincaré plots reflected the changes in the autonomic nervous system of dogs. In dogs, SD1, SD2, and SD1 × SD2 can detect a state in which parasympathetic nerve activity is suppressed.

17.
Entropy (Basel) ; 26(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38392419

RESUMEN

Federated learning (FL) is a distributed machine learning framework that enables scattered participants to collaboratively train machine learning models without revealing information to other participants. Due to its distributed nature, FL is susceptible to being manipulated by malicious clients. These malicious clients can launch backdoor attacks by contaminating local data or tampering with local model gradients, thereby damaging the global model. However, existing backdoor attacks in distributed scenarios have several vulnerabilities. For example, (1) the triggers in distributed backdoor attacks are mostly visible and easily perceivable by humans; (2) these triggers are mostly applied in the spatial domain, inevitably corrupting the semantic information of the contaminated pixels. To address these issues, this paper introduces a frequency-domain injection-based backdoor attack in FL. Specifically, by performing a Fourier transform, the trigger and the clean image are linearly mixed in the frequency domain, injecting the low-frequency information of the trigger into the clean image while preserving its semantic information. Experiments on multiple image classification datasets demonstrate that the attack method proposed in this paper is stealthier and more effective in FL scenarios compared to existing attack methods.

18.
Medicina (Kaunas) ; 60(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38929516

RESUMEN

Background and Objectives: Heart rate variability (HRV) is defined as a physiological variation in duration between sinus beats. The aim of this study was to research and analyze the HRV between various groups of patients. Materials and Methods: A retrospective study was conducted in an outpatient setting. Patients who had undergone a tilt-table test were selected for this study and were divided into three groups based on their self-reported health anamnesis: group 1 (n = 84, mean age 45.8 ± 17.8) consisted of patients with no known orthostatic intolerance or neurodegenerative disease, group 2 consisted of patients with a known or suspected orthostatic intolerance (n = 50, mean age 46.5 ± 18.6), and group 3 consisted of patients with a known or suspected neurodegenerative disorder (n = 29, mean age 55.6 ± 20.4). During the tilt-table test, HRV frequency-domain parameters-normalized low frequency (LFnu) and high frequency (HFnu), absolute powers-absolute low frequency (LF-RRI), absolute high frequency (HF-RRI), and LF/HF ratio-were recorded during 5 min rest in the supine position. Results: Group 1 had a reduced LFnu at 52.93% (SD: 18.00) compared to group 2 at 58.57% (18.06) and group 3 at 61.80% (SD: 17.74), and group 1 had increased HFnu: group 1-47.08% (SD: 17.97), group 2-41.41% (SD: 18.03), and group 3-38.16% (SD: 14.7). LFnu and HFnu differences were statistically significant (p < 0.05). LF-RRI was reported as follows: group 1-531.32 ms2 (SD: 578.57), group 2-346.2 ms2 (SD: 447.96), and group 3-143.21 ms2 (SD: 166.96). HF-RRI was reported as follows: group 1-835.87 ms2 (SD: 1625.42), group 2-297.46 ms2 (SD: 507.15), and group 3-70.83 ms2 (SD: 75.67). LF-RRI and HF-RRI comparisons between groups were statistically significant (p < 0.001). LF/HF ratios were reported as follows: group 1-1.91 (SD: 2.29), group 2-2.43 (SD: 2.33), and group 3-2.54 (SD: 2.17). LF/HF ratio comparisons between groups were statistically significant at p < 0.05. Conclusions: This study shows that patients with known or suspected orthostatic intolerance and neurodegenerative disorders have reduced HRV, possibly caused by reduced parasympathetic modulation. HRV in patients with known or suspected neurodegenerative disorders is reduced more severely than in patients with orthostatic disorders. Other studies in HRV have indicated a possible increase of risk in cardiovascular disorders in patients with reduced HRV, and therefore, HRV analysis could be a potential clinical diagnostic tool. However, the lack of universally agreed upon methodology, reference values, and possible external and internal factor influence hinders the introduction of HRV examinations into wider clinical practice.


Asunto(s)
Frecuencia Cardíaca , Pruebas de Mesa Inclinada , Humanos , Frecuencia Cardíaca/fisiología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Pruebas de Mesa Inclinada/métodos , Adulto , Anciano , Intolerancia Ortostática/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología
19.
Small ; 19(11): e2207015, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642828

RESUMEN

Thermal interfaces are vital for effective thermal management in modern electronics, especially in the emerging fields of flexible electronics and soft robotics that impose requirements for interface materials to be soft and flexible in addition to having high thermal performance. Here, a novel sandwich-structured thermal interface material (TIM) is developed that simultaneously possesses record-low thermal resistance and high flexibility. Frequency-domain thermoreflectance (FDTR) is employed to investigate the overall thermal performance of the sandwich structure. As the core of this sandwich, a vertically aligned copper nanowire (CuNW) array preserves its high intrinsic thermal conductivity, which is further enhanced by 60% via a thick 3D graphene (3DG) coating. The thin copper layers on the top and bottom play the critical roles in protecting the nanowires during device assembly. Through the bottom-up fabrication process, excellent contacts between the graphene-coated CuNWs and the top/bottom layer are realized, leading to minimal interfacial resistance. In total, the thermal resistance of the sandwich is determined as low as ~0.23 mm2  K W-1 . This work investigates a new generation of flexible thermal interface materials with an ultralow thermal resistance, which therefore renders the great promise for advanced thermal management in a wide variety of electronics.

20.
Phys Biol ; 20(3)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36893467

RESUMEN

Signal transduction networks are responsible for transferring biochemical signals from the extracellular to the intracellular environment. Understanding the dynamics of these networks helps understand their biological processes. Signals are often delivered in pulses and oscillations. Therefore, understanding the dynamics of these networks under pulsatile and periodic stimuli is useful. One tool to do this is the transfer function. This tutorial outlines the basic theory behind the transfer function approach and walks through some examples of simple signal transduction networks.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA