Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Sci Technol ; 57(41): 15644-15655, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37787753

RESUMEN

Major aryl hydrocarbon receptor (AhR) agonists were identified in extracts of blubber, liver, and muscle from six long-beaked common dolphins (Delphinus capensis) and one fin whale (Balaenoptera physalus) collected from Korean coastal waters using effect-directed analysis. Results of the H4IIE-luc bioassay indicated that the polar fractions of blubber and liver extracts from the fin whale exhibited relatively high AhR-mediated potencies. Based on full-scan screening with high-resolution mass spectrometry, 37 AhR agonist candidates, spanning four use categories: pharmaceuticals, pesticides, cosmetics, and natural products, were selected. Among these, five polar AhR agonists were newly identified through toxicological confirmation. Concentrations of polar AhR agonists in cetaceans were tissue-specific, with extracts of blubber and liver containing greater concentrations than muscle extracts. Polar AhR agonists with great log KOA values (>5) were found to biomagnify in the marine food chain potentially. Polar AhR agonists contributed 8.9% of the observed AhR-mediated potencies in blubber and 49% in liver. Rutaecarpine and alantolactone contributed significantly to the total AhR-mediated potencies of blubber, whereas hydrocortisone was a major AhR contributor in the liver of the fin whale. This study is the first to identify the tissue-specific accumulation of polar AhR agonists in blubber and liver extracts of cetaceans.


Asunto(s)
Ballena de Aleta , Extractos Hepáticos , Animales , Receptores de Hidrocarburo de Aril , Extractos Hepáticos/análisis , Hígado , República de Corea
2.
Environ Sci Technol ; 56(18): 13085-13095, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35973975

RESUMEN

Endocrine-disrupting potential was evaluated during the sewage treatment process using in vitro bioassays. Aryl hydrocarbon receptor (AhR)-, androgen receptor (AR)-, glucocorticoid receptor (GR)-, and estrogen receptor (ER)-mediated activities were assessed over five steps of the treatment process. Bioassays of organic extracts showed that AhR, AR, and GR potencies tended to decrease through the sewage treatment process, whereas ER potencies did not significantly decrease. Bioassays on reverse-phase high-performance liquid chromatography fractions showed that F5 (log KOW 2.5-3.0) had great ER potencies. Full-scan screening of these fractions detected two novel ER agonists, arenobufagin and loratadine, which are used pharmaceuticals. These compounds accounted for 3.3-25% of the total ER potencies and 4% of the ER potencies in the final effluent. The well-known ER agonists, estrone and 17ß-estradiol, accounted for 60 and 17% of the ER potencies in F5 of the influent and primary treatment, respectively. Fourier transform ion cyclotron resonance mass spectrometry analysis showed that various molecules were generated during the treatment process, especially CHO and CHOS (C: carbon, H: hydrogen, O: oxygen, and S: sulfur). This study documented that widely used pharmaceuticals are introduced into the aquatic environments without being removed during the sewage treatment process.


Asunto(s)
Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , Bioensayo/métodos , Carbono/metabolismo , Estradiol/metabolismo , Estrógenos/genética , Estrona/metabolismo , Hidrógeno/metabolismo , Oxígeno/análisis , Preparaciones Farmacéuticas , Receptores Androgénicos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Glucocorticoides/metabolismo , Azufre , Instalaciones de Eliminación de Residuos/normas , Eliminación de Residuos Líquidos/métodos , Eliminación de Residuos Líquidos/normas
3.
Sci Total Environ ; 803: 149969, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481160

RESUMEN

In this study, we identified major aryl hydrocarbon receptor (AhR) agonists in the sediments from Yeongil Bay (n = 6) using effect-directed analysis. Using the H4IIE-luc bioassays, great AhR-mediated potencies were found in aromatic fractions (F2) of sediment organic extracts from silica gel column chromatography and sub-fractions (F2.6-F2.8) from reverse phase-HPLC. Full-scan mass spectrometric analysis using GC-QTOFMS was conducted to identify novel AhR agonists in highly potent fractions, such as F2.6-F2.8 of S1 (Gumu Creek). Selection criteria for AhR-active compounds consisted of three steps, including matching factor of NIST library (≥70), aromatic structures, and the number of aromatic rings (≥4). Fifty-nine compounds were selected as tentative AhR agonist candidates, with the AhR-mediated activity being assessed for six compounds for which standard materials were available commercially. Of these compounds, 20-methylcholanthrene, 7-methylbenz[a]anthracene, 10-methylbenz[a]pyrene, and 7,12-dimethylbenz[a]anthracene exhibited significant AhR-mediated potency. Relative potency values of these compounds were determined relative to benzo[a]pyrene to be 3.2, 1.4, 1.2, and 0.2, respectively. EPA positive matrix factorization modeling indicated that the sedimentary AhR-active aromatic compounds primarily originated from coal combustion and vehicle emissions. Potency balance analysis indicated that four novel AhR agonists explained 0.007% to 1.7% of bioassay-derived AhR-mediated potencies in samples.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Receptores de Hidrocarburo de Aril , Bioensayo , Monitoreo del Ambiente , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad
4.
J Hazard Mater ; 429: 128305, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35077967

RESUMEN

Although bioaccumulation of persistent organic pollutants in seabirds has been examined, few studies have been conducted to identify previously unidentified substances. Here, aryl hydrocarbon receptor (AhR) agonists were identified in livers of black-tailed gulls from South Korea using effect-directed analysis combined with full-scan screening analysis. Significant AhR-mediated potencies were observed in the polar fractions of liver extracts using H4IIE-luc bioassay. Eight known polar AhR agonists accounted for 11-20% of the total AhR-mediated potencies in the polar fractions; hydrocortisone and rutaecarpine were the major contributors. Twenty-two AhR agonist candidates in the polar fractions were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry during a six-step selection process. Of these, [10]-gingerol, angelicin, corticosterone, eupatilin, etofenprox, oxadixyl, and tretinoin were identified as novel AhR agonists. The contribution to potencies increased with inclusion of novel AhR agonists (27-52%); corticosterone and [10]-gingerol contributed significantly. Quantitative structure-activity relationship suggested that the novel AhR agonists have other potential toxic effects, including carcinogenicity and mutagenicity. Polar AhR agonists have been used for pharmaceuticals and pesticides. Some novel AhR agonists have log KOW > 2 and log KOA ≥ 6, which indicates that these compounds can be biomagnified in air-breathing organisms, such as seabirds.


Asunto(s)
Charadriiformes , Preparaciones Farmacéuticas , Hidrocarburos Policíclicos Aromáticos , Animales , Sedimentos Geológicos/química , Hígado/química , Hidrocarburos Policíclicos Aromáticos/análisis , Receptores de Hidrocarburo de Aril
5.
Environ Pollut ; 289: 117910, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426193

RESUMEN

Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35-97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with Orbitrap™ high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Bioensayo , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA