Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(14): 3541-3562.e51, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996487

RESUMEN

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth's death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.


Asunto(s)
Genoma , Mamuts , Piel , Animales , Mamuts/genética , Genoma/genética , Femenino , Elefantes/genética , Cromatina/genética , Fósiles , ADN Antiguo/análisis , Ratones , Humanos , Cromosoma X/genética
2.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37536338

RESUMEN

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Asunto(s)
Cromosomas de Insectos , Drosophila , Animales , Cromatina/genética , Empaquetamiento del ADN , Drosophila/genética , Mamíferos/genética , Neurogénesis , Neuronas , Factores de Transcripción , Proteínas de Drosophila , Genoma de los Insectos , Regulación de la Expresión Génica
3.
Cell ; 184(21): 5448-5464.e22, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34624221

RESUMEN

Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin's hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL "jumps ship" from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , Conformación de Ácido Nucleico , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Hidrólisis , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformación Proteica , Cohesinas
4.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595451

RESUMEN

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Asunto(s)
Momento de Replicación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , ADN/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias , Elementos de Facilitación Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
5.
Annu Rev Cell Dev Biol ; 35: 357-379, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31283382

RESUMEN

Eukaryotic transcription factors (TFs) from the same structural family tend to bind similar DNA sequences, despite the ability of these TFs to execute distinct functions in vivo. The cell partly resolves this specificity paradox through combinatorial strategies and the use of low-affinity binding sites, which are better able to distinguish between similar TFs. However, because these sites have low affinity, it is challenging to understand how TFs recognize them in vivo. Here, we summarize recent findings and technological advancements that allow for the quantification and mechanistic interpretation of TF recognition across a wide range of affinities. We propose a model that integrates insights from the fields of genetics and cell biology to provide further conceptual understanding of TF binding specificity. We argue that in eukaryotes, target specificity is driven by an inhomogeneous 3D nuclear distribution of TFs and by variation in DNA binding affinity such that locally elevated TF concentration allows low-affinity binding sites to be functional.


Asunto(s)
Eucariontes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Regulación de la Expresión Génica , Humanos
6.
Cell ; 171(3): 557-572.e24, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053968

RESUMEN

Chromosome conformation capture technologies have revealed important insights into genome folding. Yet, how spatial genome architecture is related to gene expression and cell fate remains unclear. We comprehensively mapped 3D chromatin organization during mouse neural differentiation in vitro and in vivo, generating the highest-resolution Hi-C maps available to date. We found that transcription is correlated with chromatin insulation and long-range interactions, but dCas9-mediated activation is insufficient for creating TAD boundaries de novo. Additionally, we discovered long-range contacts between gene bodies of exon-rich, active genes in all cell types. During neural differentiation, contacts between active TADs become less pronounced while inactive TADs interact more strongly. An extensive Polycomb network in stem cells is disrupted, while dynamic interactions between neural transcription factors appear in vivo. Finally, cell type-specific enhancer-promoter contacts are established concomitant to gene expression. This work shows that multiple factors influence the dynamics of chromatin interactions in development.


Asunto(s)
Cromatina/metabolismo , Genoma , Neurogénesis , Animales , Factor de Unión a CCCTC , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Exones , Expresión Génica , Redes Reguladoras de Genes , Ratones , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
7.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985562

RESUMEN

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Genoma Humano , Proteínas Represoras/metabolismo , Factor de Unión a CCCTC , Línea Celular Tumoral , Proteínas de Unión al ADN , Elementos de Facilitación Genéticos , Código de Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas/metabolismo , Cohesinas
8.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38521067

RESUMEN

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Asunto(s)
Cromosomas , ADN-Topoisomerasas de Tipo II , ADN-Topoisomerasas de Tipo II/genética , Cromosomas/genética , Mitosis/genética , Interfase/genética , Polímeros
9.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38604171

RESUMEN

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Proteínas de Unión a la Región de Fijación a la Matriz , ARN Polimerasa II , Receptores de Estrógenos , Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Elementos de Nucleótido Esparcido Largo/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Asociadas a Matriz Nuclear/genética , Regulación de la Expresión Génica , Unión Proteica , Células HEK293 , Genoma Humano
10.
Mol Cell ; 83(9): 1446-1461.e6, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996812

RESUMEN

Enhancer clusters overlapping disease-associated mutations in Pierre Robin sequence (PRS) patients regulate SOX9 expression at genomic distances over 1.25 Mb. We applied optical reconstruction of chromatin architecture (ORCA) imaging to trace 3D locus topology during PRS-enhancer activation. We observed pronounced changes in locus topology between cell types. Subsequent analysis of single-chromatin fiber traces revealed that these ensemble-average differences arise through changes in the frequency of commonly sampled topologies. We further identified two CTCF-bound elements, internal to the SOX9 topologically associating domain, which promote stripe formation, are positioned near the domain's 3D geometric center, and bridge enhancer-promoter contacts in a series of chromatin loops. Ablation of these elements results in diminished SOX9 expression and altered domain-wide contacts. Polymer models with uniform loading across the domain and frequent cohesin collisions recapitulate this multi-loop, centrally clustered geometry. Together, we provide mechanistic insights into architectural stripe formation and gene regulation over ultra-long genomic ranges.


Asunto(s)
Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Humanos , Cromatina/genética , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Genoma , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo
11.
Mol Cell ; 77(1): 67-81.e7, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784359

RESUMEN

Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.


Asunto(s)
Cromatina/metabolismo , Poro Nuclear/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Acuaporinas/metabolismo , Sitios de Unión/fisiología , Línea Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Genoma/fisiología , Masculino , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
12.
Mol Cell ; 78(3): 522-538.e9, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220303

RESUMEN

To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation.


Asunto(s)
Senescencia Celular/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Genoma Humano , Oncogenes , Células Cultivadas , Ensamble y Desensamble de Cromatina/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Fibroblastos , Heterocromatina/genética , Humanos , Hibridación Fluorescente in Situ
13.
Am J Hum Genet ; 111(10): 2265-2282, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39293448

RESUMEN

Congenital microcoria (MCOR) is a rare hereditary developmental defect of the iris dilator muscle frequently associated with high axial myopia and high intraocular pressure (IOP) glaucoma. The condition is caused by submicroscopic rearrangements of chromosome 13q32.1. However, the mechanisms underlying the failure of iris development and the origin of associated features remain elusive. Here, we present a 3D architecture model of the 13q32.1 region, demonstrating that MCOR-related deletions consistently disrupt the boundary between two topologically associating domains (TADs). Deleting the critical MCOR-causing region in mice reveals ectopic Sox21 expression precisely aligning with Dct, each located in one of the two neighbor TADs. This observation is consistent with the TADs' boundary alteration and adoption of Dct regulatory elements by the Sox21 promoter. Additionally, we identify Tgfb2 as a target gene of SOX21 and show TGFΒ2 accumulation in the aqueous humor of an MCOR-affected subject. Accumulation of TGFB2 is recognized for its role in glaucoma and potential impact on axial myopia. Our results highlight the importance of SOX21-TGFB2 signaling in iris development and control of eye growth and IOP. Insights from MCOR studies may provide therapeutic avenues for this condition but also for glaucoma and high myopia conditions, affecting millions of people.


Asunto(s)
Glaucoma , Miopía , Factor de Crecimiento Transformador beta2 , Animales , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Ratones , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Miopía/genética , Miopía/metabolismo , Humanos , Iris/metabolismo , Iris/patología , Iris/anomalías , Presión Intraocular
14.
Mol Cell ; 75(6): 1229-1242.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31377117

RESUMEN

Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product. DNA deletion within the Ifng-as1 locus disrupted chromatin organization of the extended Ifng locus, impaired Ifng response, and compromised host defense. Insertion of a polyA signal ablated the Ifng-as1 full-length transcript and impaired host defense, while allowing proper chromatin structure. Transient knockdown of Ifng-as1 also reduced IFN-γ production. In humans, discordant expression of IFNG and IFNG-AS1 was evident in memory T cells, with high expression of this long non-coding RNA (lncRNA) and low expression of the cytokine. These results establish Ifng-as1 as an important regulator of Ifng expression, as a DNA element and transcribed RNA, involved in dynamic and cell state-specific responses to infection.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Memoria Inmunológica , Infecciones/inmunología , Interferón gamma/inmunología , ARN no Traducido/inmunología , Linfocitos T/inmunología , Animales , Cromatina/genética , Cromatina/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Infecciones/genética , Infecciones/patología , Interferón gamma/genética , Ratones , ARN no Traducido/genética , Linfocitos T/patología
15.
Mol Cell ; 76(2): 306-319, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31521504

RESUMEN

Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby serve as the protein anchors and determinants of 3D genome organization. Conversely, chromatin conformation shapes TF activity, for example, by looping TF-bound enhancers to distally located target genes. Despite considerable effort, our understanding of the mechanistic relation between TFs and 3D genome organization remains limited, in large part due to this interdependency. In this review, we summarize the evidence for the diverse mechanisms by which TFs and their activity shape the 3D genome and vice versa. We further highlight outstanding questions and potential approaches for untangling the complex relation between TF activity and the 3D genome.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Cromatina/química , Cromatina/genética , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética
16.
Mol Cell ; 74(1): 212-222.e5, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30795893

RESUMEN

Eukaryotic chromosomes are organized in multiple scales, from nucleosomes to chromosome territories. Recently, genome-wide methods identified an intermediate level of chromosome organization, topologically associating domains (TADs), that play key roles in transcriptional regulation. However, these methods cannot directly examine the interplay between transcriptional activation and chromosome architecture while maintaining spatial information. Here we present a multiplexed, sequential imaging approach (Hi-M) that permits simultaneous detection of chromosome organization and transcription in single nuclei. This allowed us to unveil the changes in 3D chromatin organization occurring upon transcriptional activation and homologous chromosome unpairing during awakening of the zygotic genome in intact Drosophila embryos. Excitingly, the ability of Hi-M to explore the multi-scale chromosome architecture with spatial resolution at different stages of development or during the cell cycle will be key to understanding the mechanisms and consequences of the 4D organization of the genome.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromosomas de Insectos/genética , Drosophila melanogaster/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microscopía Fluorescente/métodos , ARN/genética , Análisis de la Célula Individual/métodos , Transcripción Genética , Activación Transcripcional , Animales , Ciclo Celular/genética , Cromatina/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación Fluorescente in Situ , ARN/biosíntesis
17.
Annu Rev Genet ; 52: 159-183, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30183405

RESUMEN

In bacteria, more than half of the genes in the genome are organized in operons. In contrast, in eukaryotes, functionally related genes are usually dispersed across the genome. There are, however, numerous examples of functional clusters of nonhomologous genes for metabolic pathways in fungi and plants. Despite superficial similarities with operons (physical clustering, coordinate regulation), these clusters have not usually originated by horizontal gene transfer from bacteria, and (unlike operons) the genes are typically transcribed separately rather than as a single polycistronic message. This clustering phenomenon raises intriguing questions about the origins of clustered metabolic pathways in eukaryotes and the significance of clustering for pathway function. Here we review metabolic gene clusters from fungi and plants, highlight commonalities and differences, and consider how these clusters form and are regulated. We also identify opportunities for future research in the areas of large-scale genomics, synthetic biology, and experimental evolution.


Asunto(s)
Hongos/genética , Redes y Vías Metabólicas/genética , Familia de Multigenes/genética , Plantas/genética , Eucariontes/genética , Eucariontes/metabolismo , Hongos/metabolismo , Transferencia de Gen Horizontal , Genoma/genética , Operón/genética , Plantas/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(15): e2217053120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011200

RESUMEN

The genomes of RNA viruses encode the information required for replication in host cells both in their linear sequence and in complex higher-order structures. A subset of these RNA genome structures show clear sequence conservation, and have been extensively described for well-characterized viruses. However, the extent to which viral RNA genomes contain functional structural elements-unable to be detected by sequence alone-that nonetheless are critical to viral fitness is largely unknown. Here, we devise a structure-first experimental strategy and use it to identify 22 structure-similar motifs across the coding sequences of the RNA genomes for the four dengue virus serotypes. At least 10 of these motifs modulate viral fitness, revealing a significant unnoticed extent of RNA structure-mediated regulation within viral coding sequences. These viral RNA structures promote a compact global genome architecture, interact with proteins, and regulate the viral replication cycle. These motifs are also thus constrained at the levels of both RNA structure and protein sequence and are potential resistance-refractory targets for antivirals and live-attenuated vaccines. Structure-first identification of conserved RNA structure enables efficient discovery of pervasive RNA-mediated regulation in viral genomes and, likely, other cellular RNAs.


Asunto(s)
Dengue , Virus ARN , Humanos , Conformación de Ácido Nucleico , ARN Viral/metabolismo , Virus ARN/genética , Genoma Viral/genética , Replicación Viral/genética
19.
Trends Genet ; 38(5): 483-500, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35227512

RESUMEN

Programmed elimination of DNA during development yields somatic cell nuclei with dramatically different DNA sequence and content relative to germline nuclei, profoundly influencing genome architecture and stability. Whole-genome sequencing has significantly expanded the list of taxa known to exhibit this trait and has revealed the identity of excised genes and transposable elements (TEs) in certain taxa. Here, we compare the diverse mechanisms employed by ciliates, nematodes, copepods, and lamprey to downsize their genomes during development and propose tests of hypotheses about the evolution and/or maintenance of this trait. We explore possible functional roles that programmed DNA elimination (PDE) could play in genomic defense (especially against TEs), regulation of development, sex determination, co-option, and modulating nucleotypic effects, which together argue for a place in the mainstream investigation of genome evolution.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Secuencia de Bases , Núcleo Celular/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Células Germinativas
20.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37264486

RESUMEN

Three-dimensional (3D) genome architecture is characterized by multi-scale patterns and plays an essential role in gene regulation. Chromatin conformation capturing experiments have revealed many properties underlying 3D genome architecture, such as the compartmentalization of chromatin based on transcriptional states. However, they are complex, costly and time consuming, and therefore only a limited number of cell types have been examined using these techniques. Increasing effort is being directed towards deriving computational methods that can predict chromatin conformation and associated structures. Here we present DNA-delay differential analysis (DDA), a purely sequence-based method based on chaos theory to predict genome-wide A and B compartments. We show that DNA-DDA models derived from a 20 Mb sequence are sufficient to predict genome wide compartmentalization at the scale of 100 kb in four different cell types. Although this is a proof-of-concept study, our method shows promise in elucidating the mechanisms responsible for genome folding as well as modeling the impact of genetic variation on 3D genome architecture and the processes regulated thereby.


Asunto(s)
Cromatina , Cromosomas , Secuencia de Bases , Cromosomas/genética , Cromatina/genética , Genoma , ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA