Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(4): 785-802.e10, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35104452

RESUMEN

p53, master transcriptional regulator of the genotoxic stress response, controls cell-cycle arrest and apoptosis following DNA damage. Here, we identify a p53-induced lncRNA suicidal PARP-1 cleavage enhancer (SPARCLE) adjacent to miR-34b/c required for p53-mediated apoptosis. SPARCLE is a ∼770-nt, nuclear lncRNA induced 1 day after DNA damage. Despite low expression (<16 copies/cell), SPARCLE deletion increases DNA repair and reduces DNA-damage-induced apoptosis as much as p53 deficiency, while its overexpression restores apoptosis in p53-deficient cells. SPARCLE does not alter gene expression. SPARCLE binds to PARP-1 with nanomolar affinity and causes apoptosis by acting as a caspase-3 cofactor for PARP-1 cleavage, which separates PARP-1's N-terminal (NT) DNA-binding domain from its catalytic domains. NT-PARP-1 inhibits DNA repair. Expressing NT-PARP-1 in SPARCLE-deficient cells increases unrepaired DNA damage and restores apoptosis after DNA damage. Thus, SPARCLE enhances p53-induced apoptosis by promoting PARP-1 cleavage, which interferes with DNA-damage repair.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Neoplasias Colorrectales/enzimología , Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , ARN Largo no Codificante/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
2.
Mol Cell ; 74(2): 254-267.e10, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30824372

RESUMEN

DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Apoptosis/genética , Supervivencia Celular/genética , Daño del ADN/genética , Células HEK293 , Humanos , ARN Largo no Codificante/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
3.
Bioessays ; : e2400037, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030821

RESUMEN

Genotoxic stress, arising from various environmental sources and endogenous cellular processes, pose a constant threat to genomic stability. Cells have evolved intricate mechanisms to detect and repair DNA damage, orchestrating a robust genotoxic stress response to safeguard the integrity of the genome. Recent research has shed light on the crucial role of co- and post-transcriptional regulatory mechanisms in modulating the cellular response to genotoxic stress. Here we highlight recent advances illustrating the intricate interplay between pre-mRNA processing, with a focus on 3'-end processing, and genotoxic stress response.

4.
Mol Cell Proteomics ; 23(1): 100695, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101750

RESUMEN

In response to genotoxic stress, cells evolved with a complex signaling network referred to as the DNA damage response (DDR). It is now well established that the DDR depends upon various posttranslational modifications; among them, ubiquitylation plays a key regulatory role. Here, we profiled ubiquitylation in response to the DNA alkylating agent methyl methanesulfonate (MMS) in the budding yeast Saccharomyces cerevisiae using quantitative proteomics. To discover new proteins ubiquitylated upon DNA replication stress, we used stable isotope labeling by amino acids in cell culture, followed by an enrichment of ubiquitylated peptides and LC-MS/MS. In total, we identified 1853 ubiquitylated proteins, including 473 proteins that appeared upregulated more than 2-fold in response to MMS treatment. This enabled us to localize 519 ubiquitylation sites potentially regulated upon MMS in 435 proteins. We demonstrated that the overexpression of some of these proteins renders the cells sensitive to MMS. We also assayed the abundance change upon MMS treatment of a selection of yeast nuclear proteins. Several of them were differentially regulated upon MMS treatment. These findings corroborate the important role of ubiquitin-proteasome-mediated degradation in regulating the DDR.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ubiquitinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Reparación del ADN
5.
Mol Cancer ; 23(1): 21, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263180

RESUMEN

BACKGROUND: The ATM kinase constitutes a master regulatory hub of DNA damage and activates the p53 response pathway by phosphorylating the MDM2 protein, which develops an affinity for the p53 mRNA secondary structure. Disruption of this interaction prevents the activation of the nascent p53. The link of the MDM2 protein-p53 mRNA interaction with the upstream DNA damage sensor ATM kinase and the role of the p53 mRNA in the DNA damage sensing mechanism, are still highly anticipated. METHODS: The proximity ligation assay (PLA) has been extensively used to reveal the sub-cellular localisation of the protein-mRNA and protein-protein interactions. ELISA and co-immunoprecipitation confirmed the interactions in vitro and in cells. RESULTS: This study provides a novel mechanism whereby the p53 mRNA interacts with the ATM kinase enzyme and shows that the L22L synonymous mutant, known to alter the secondary structure of the p53 mRNA, prevents the interaction. The relevant mechanistic roles in the DNA Damage Sensing pathway, which is linked to downstream DNA damage response, are explored. Following DNA damage (double-stranded DNA breaks activating ATM), activated MDMX protein competes the ATM-p53 mRNA interaction and prevents the association of the p53 mRNA with NBS1 (MRN complex). These data also reveal the binding domains and the phosphorylation events on ATM that regulate the interaction and the trafficking of the complex to the cytoplasm. CONCLUSION: The presented model shows a novel interaction of ATM with the p53 mRNA and describes the link between DNA Damage Sensing with the downstream p53 activation pathways; supporting the rising functional implications of synonymous mutations altering secondary mRNA structures.


Asunto(s)
Polinucleótido 5'-Hidroxil-Quinasa , Proteínas Proto-Oncogénicas c-mdm2 , Humanos , Proteína p53 Supresora de Tumor , Daño del ADN , Reparación del ADN , Proteínas de la Ataxia Telangiectasia Mutada
6.
Mol Cell ; 64(3): 507-519, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773672

RESUMEN

SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent γH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.


Asunto(s)
Ciclinas/genética , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Histonas/genética , Proteínas Nucleares/genética , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Secuencias de Aminoácidos , Animales , Apoptosis , Sitios de Unión , Línea Celular Tumoral , Ciclinas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Proteolisis , ARN Mensajero/metabolismo , Ratas , Transducción de Señal , Xenopus laevis , Pez Cebra , Factores de Escisión y Poliadenilación de ARNm/metabolismo
7.
Mol Cell ; 64(4): 803-814, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27818144

RESUMEN

Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.


Asunto(s)
Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/uso terapéutico , Apoptosis/genética , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/mortalidad , Neoplasias del Colon/patología , Citosol/efectos de los fármacos , Citosol/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Transducción de Señal , Sulfonamidas/farmacología , Análisis de Supervivencia , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443141

RESUMEN

Mutagenic compounds are a potent source of human disease. By inducing genetic instability, they can accelerate the evolution of human cancers or lead to the development of genetically inherited diseases. Here, we show that in addition to genetic mutations, mutagens are also a powerful source of transcription errors. These errors arise in dividing and nondividing cells alike, affect every class of transcripts inside cells, and, in certain cases, greatly exceed the number of mutations that arise in the genome. In addition, we reveal the kinetics of transcription errors in response to mutagen exposure and find that DNA repair is required to mitigate transcriptional mutagenesis after exposure. Together, these observations have far-reaching consequences for our understanding of mutagenesis in human aging and disease, and suggest that the impact of DNA damage on human physiology has been greatly underestimated.


Asunto(s)
Daño del ADN/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Transcripción Genética/genética , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Mutagénesis/genética , Mutagénesis/fisiología , Mutágenos/toxicidad , Mutación/genética
9.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33602817

RESUMEN

The DNA damage checkpoint induces many cellular changes to cope with genotoxic stress. However, persistent checkpoint signaling can be detrimental to growth partly due to blockage of cell cycle resumption. Checkpoint dampening is essential to counter such harmful effects, but its mechanisms remain to be understood. Here, we show that the DNA helicase Srs2 removes a key checkpoint sensor complex, RPA, from chromatin to down-regulate checkpoint signaling in budding yeast. The Srs2 and RPA antagonism is supported by their numerous suppressive genetic interactions. Importantly, moderate reduction of RPA binding to single-strand DNA (ssDNA) rescues hypercheckpoint signaling caused by the loss of Srs2 or its helicase activity. This rescue correlates with a reduction in the accumulated RPA and the associated checkpoint kinase on chromatin in srs2 mutants. Moreover, our data suggest that Srs2 regulation of RPA is separable from its roles in recombinational repair and critically contributes to genotoxin resistance. We conclude that dampening checkpoint by Srs2-mediated RPA recycling from chromatin aids cellular survival of genotoxic stress and has potential implications in other types of DNA transactions.


Asunto(s)
Cromatina/genética , Daño del ADN , ADN Helicasas/metabolismo , ADN de Cadena Simple/genética , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , ADN Helicasas/genética , Reparación del ADN , ADN de Cadena Simple/metabolismo , Proteína de Replicación A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612854

RESUMEN

Mitomycin C (MMC)-induced genotoxic stress can be considered to be a novel trigger of endothelial dysfunction and atherosclerosis-a leading cause of cardiovascular morbidity and mortality worldwide. Given the increasing genotoxic load on the human organism, the decryption of the molecular pathways underlying genotoxic stress-induced endothelial dysfunction could improve our understanding of the role of genotoxic stress in atherogenesis. Here, we performed a proteomic profiling of human coronary artery endothelial cells (HCAECs) and human internal thoracic endothelial cells (HITAECs) in vitro that were exposed to MMC to identify the biochemical pathways and proteins underlying genotoxic stress-induced endothelial dysfunction. We denoted 198 and 71 unique, differentially expressed proteins (DEPs) in the MMC-treated HCAECs and HITAECs, respectively; only 4 DEPs were identified in both the HCAECs and HITAECs. In the MMC-treated HCAECs, 44.5% of the DEPs were upregulated and 55.5% of the DEPs were downregulated, while in HITAECs, these percentages were 72% and 28%, respectively. The denoted DEPs are involved in the processes of nucleotides and RNA metabolism, vesicle-mediated transport, post-translation protein modification, cell cycle control, the transport of small molecules, transcription and signal transduction. The obtained results could improve our understanding of the fundamental basis of atherogenesis and help in the justification of genotoxic stress as a risk factor for atherosclerosis.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Mitomicina/farmacología , Proteómica , Daño del ADN
11.
Biol Chem ; 404(6): 585-599, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36420535

RESUMEN

The dysregulation of the translation elongation factor families which are responsible for reprogramming of mRNA translation has been shown to contribute to tumor progression. Here, we report that the acetylation of eukaryotic Elongation Factor 1 Alpha 1 (eEF1A1/EF1A1) is required for genotoxic stress response and maintaining the malignancy of colorectal cancer (CRC) cells. The evolutionarily conserved site K439 is identified as the key acetylation site. Tissue expression analysis demonstrates that the acetylation level of eEF1A1 K439 is higher than paired normal tissues. Most importantly, hyperacetylation of eEF1A1 at K439 negatively correlates with CRC patient survival. Mechanistically, CBP and SIRT1 are the major acetyltransferase and deacetylase of eEF1A1. Hyperacetylation of eEF1A1 at K439 shows a significant tumor-promoting effect by increasing the capacity of proliferation, migration, and invasion of CRC cells. Our findings identify the altered post-translational modification at the translation machines as a critical factor in stress response and susceptibility to colorectal carcinogenesis.


Asunto(s)
Neoplasias Colorrectales , Factor 1 de Elongación Peptídica , Humanos , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Carcinogénesis
12.
Cell Mol Life Sci ; 79(2): 86, 2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35066747

RESUMEN

Deubiquitinylases (DUBs) are central regulators of the ubiquitin system involved in protein regulation and cell signalling and are important for a variety of physiological processes. Most DUBs are cysteine proteases, and few other proteases are metalloproteases of the JAB1/MPN +/MOV34 protease family (JAMM). STAM-binding protein like 1 (STAMBPL1), a member of the JAMM family, cleaves ubiquitin bonds and has a function in regulating cell survival, Tax-mediated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and epithelial-mesenchymal transition. However, the molecular mechanism by which STAMBPL1 influences cell survival is not well defined, especially with regard to its deubiquitinylation function. Here, we show that reactive oxygen species (ROS) induced by chemotherapeutic agents or the human microbial pathogen Helicobacter pylori can induce cullin 1-RING ubiquitin ligase (CRL1) and 26S proteasome-dependent degradation STAMBPL1. Interestingly, STAMBPL1 has a direct interaction with the constitutive photomorphogenic 9 (COP9 or CSN) signalosome subunits CSN5 and CSN6. The interaction with the CSN is required for the stabilisation and function of the STAMBPL1 protein. In addition, STAMBPL1 deubiquitinylates the anti-apoptotic protein Survivin and thus ameliorates cell survival. In summary, our data reveal a previously unknown mechanism by which the deubiquitinylase STAMBPL1 and the E3 ligase CRL1 balance the level of Survivin degradation and thereby determine apoptotic cell death. In response to genotoxic stress, the degradation of STAMBPL1 augments apoptotic cell death. This new mechanism may be useful to develop therapeutic strategies targeting STAMBPL1 in tumours that have high STAMBPL1 and Survivin protein levels.


Asunto(s)
Apoptosis , Complejo del Señalosoma COP9/metabolismo , Helicobacter pylori/fisiología , Péptido Hidrolasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular , Doxorrubicina/farmacología , Humanos , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Survivin/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Bioessays ; 43(8): e2000311, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34096096

RESUMEN

Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.


Asunto(s)
Daño del ADN , Biosíntesis de Proteínas , Citoplasma/metabolismo , Daño del ADN/genética , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
Genes Dev ; 29(19): 2067-80, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26443850

RESUMEN

Accurate completion of replication relies on the ability of cells to activate error-free recombination-mediated DNA damage bypass at sites of perturbed replication. However, as anti-recombinase activities are also recruited to replication forks, how recombination-mediated damage bypass is enabled at replication stress sites remained puzzling. Here we uncovered that the conserved SUMO-like domain-containing Saccharomyces cerevisiae protein Esc2 facilitates recombination-mediated DNA damage tolerance by allowing optimal recruitment of the Rad51 recombinase specifically at sites of perturbed replication. Mechanistically, Esc2 binds stalled replication forks and counteracts the anti-recombinase Srs2 helicase via a two-faceted mechanism involving chromatin recruitment and turnover of Srs2. Importantly, point mutations in the SUMO-like domains of Esc2 that reduce its interaction with Srs2 cause suboptimal levels of Rad51 recruitment at damaged replication forks. In conclusion, our results reveal how recombination-mediated DNA damage tolerance is locally enabled at sites of replication stress and globally prevented at undamaged replicating chromosomes.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Proteínas Nucleares/metabolismo , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular , Cromatina/metabolismo , Daño del ADN/genética , ADN Helicasas/metabolismo , Proteínas Nucleares/genética , Mutación Puntual , Unión Proteica , Recombinasa Rad51/metabolismo
15.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175941

RESUMEN

A coordinated action between nuclear and mitochondrial activities is essential for a proper cellular response to genotoxic stress. Several nuclear transcription factors, including STAT3, translocate to mitochondria to exert mitochondrial function regulation; however, the role of mitochondrial STAT3 (mitoSTAT3) under stressed conditions is still poorly understood. In this study, we examined whether the stable expression of mitoSTAT3 wild-type or mutated at the conserved serine residue (Ser727), which is involved in the mitochondrial function of STAT3, can affect the DNA damage response to UVC radiation. To address this issue, we generated mammalian cells (NIH-3T3 and HCT-116 cells) stably transduced to express the mitochondrial-targeted Stat3 gene in its wild-type or Ser727 mutated forms. Our results show that cell proliferation is enhanced in mitoStat3-transduced cells under both non-stressed and stressed conditions. Once irradiated with UVC, cells expressing wild-type mitoSTAT3 showed the highest cell survival, which was associated with a significant decrease in cell death. Low levels of oxidative stress were detected in UVC-irradiated NIH-3T3 cells expressing mitoSTAT3 wild-type or serine-related dominant active form (Ser727D), confirming a role of mitochondrial STAT3 in minimizing oxidant cellular stress that provides an advantage for cell survival.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Ratones , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , Proliferación Celular , Serina/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Mamíferos/metabolismo
16.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047754

RESUMEN

HMG-CoA reductase inhibitors (statins) are widely used in the therapy of atherosclerosis and have a number of pleiotropic effects, including DNA repair regulation. We studied the cytogenetic damage and the expression of DNA repair genes (DDB1, ERCC4, and ERCC5) in human coronary artery (HCAEC) and internal thoracic artery endothelial cells (HITAEC) in vitro exposed to mitomycin C (MMC) (positive control), MMC and atorvastatin (MMC+Atv), MMC followed by atorvastatin treatment (MMC/Atv) and 0.9% NaCl (negative control). MMC/Atv treated HCAEC were characterized by significantly decreased micronuclei (MN) frequency compared to the MMC+Atv group and increased nucleoplasmic bridges (NPBs) frequency compared to both MMC+Atv treated cells and positive control; DDB1, ERCC4, and ERCC5 genes were upregulated in MMC+Atv and MMC/Atv treated HCAEC in comparison with the positive control. MMC+Atv treated HITAEC were characterized by reduced MN frequency compared to positive control and decreased NPBs frequency in comparison with both the positive control and MMC/Atv group. Nuclear buds (NBUDs) frequency was significantly lower in MMC/Atv treated cells than in the positive control. The DDB1 gene was downregulated in the MMC+Atv group compared to the positive control, and the ERCC5 gene was upregulated in MMC/Atv group compared to both the positive control and MMC+Atv group. We propose that atorvastatin can modulate the DNA damage repair response in primary human endothelial cells exposed to MMC in a cell line- and incubation scheme-dependent manner that can be extremely important for understanding the fundamental aspects of pleoitropic action of atorvastatin and can also be used to correct the therapy of patients with atherosclerosis characterized by a high genotoxic load.


Asunto(s)
Aterosclerosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Atorvastatina/farmacología , Mitomicina/farmacología , Células Endoteliales , Reparación del ADN , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Daño del ADN
17.
Clin Immunol ; 238: 108998, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398286

RESUMEN

Deciphering signaling pathways that regulate the complex interplay between inflammation and cell death is a key challenge in understanding innate immune responses. Over recent years, receptor interacting protein (RIP) kinases have been described to regulate the interplay between inflammation and cell death. Whereas RIP1 and 3, the most well described members of the RIP kinase family, play important roles in necroptosis, RIP2's involvement in regulating inflammation, cell death processes and cancer is less well described and controversially discussed. Here, we demonstrate that RIP2 exerts immune regulatory functions by regulating mitochondrial damage and mitochondrial superoxide production in response to SV40 LT-induced genotoxic stress by the induction of ULK1-phosphorylation, therefore regulating the expression of interferon stimulated genes (ISGs) and NLRP3-inflammasome dependent IL-1ß release. Because RIP2 is upregulated and/or activated in autoimmune/inflammatory disease and cancer, observations from this study promise implications of RIP kinases in human disease.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Daño del ADN , Homeostasis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
18.
EMBO Rep ; 21(9): e50912, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32761762

RESUMEN

SIRT1 is a NAD+ -dependent deacetylase that controls key metabolic and signaling pathways, including inactivating the p53 tumor suppressor. However, the mechanisms controlling SIRT1 enzymatic activity in the context of cancer are unclear. Here, we show that the previously undescribed CSAG2 protein is a direct activator of SIRT1. CSAG2 is normally restricted to expression in the male germline but is frequently re-activated in cancers. CSAG2 is necessary for cancer cell proliferation and promotes tumorigenesis in vivo. Biochemical studies revealed that CSAG2 directly binds to and stimulates SIRT1 activity toward multiple substrates. Importantly, CSAG2 enhances SIRT1-mediated deacetylation of p53, inhibits p53 transcriptional activity, and improves cell survival in response to genotoxic stress. Mechanistically, CSAG2 binds SIRT1 catalytic domain and promotes activity independent of altering substrate affinity. Together, our results identify a previously undescribed mechanism for SIRT1 activation in cancer cells and highlight unanticipated approaches to therapeutically modulate SIRT1.


Asunto(s)
Neoplasias , Sirtuina 1 , Acetilación , Apoptosis , Proliferación Celular/genética , Daño del ADN , Humanos , Masculino , Neoplasias/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409374

RESUMEN

Previous research has identified an association between external radiation and disc degeneration, but the mechanism was poorly understood. This study explores the effects of ionizing radiation (IR) on inducing cellular senescence of annulus fibrosus (AF) in cell culture and in an in vivo mouse model. Exposure of AF cell culture to 10-15 Gy IR for 5 min followed by 5 days of culture incubation resulted in almost complete senescence induction as evidenced by SA-ßgal positive staining of cells and elevated mRNA expression of the p16 and p21 senescent markers. IR-induced senescent AF cells exhibited increased matrix catabolism, including elevated matrix metalloproteinase (MMP)-1 and -3 protein expression and aggrecanolysis. Analogous results were seen with whole body IR-exposed mice, demonstrating that genotoxic stress also drives disc cellular senescence and matrix catabolism in vivo. These results have important clinical implications in the potential adverse effects of ionizing radiation on spinal health.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Anillo Fibroso/metabolismo , Senescencia Celular , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Radiación Ionizante
20.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077248

RESUMEN

Medulloblastoma is a pediatric brain malignancy that consists of four transcriptional subgroups. Structural and numerical aneuploidy are common in all subgroups, although they are particularly profound in Group 3 and Group 4 medulloblastoma and in a subtype of SHH medulloblastoma termed SHHα. This suggests that chromosomal instability (CIN), the process leading to aneuploidy, is an important player in medulloblastoma pathophysiology. However, it is not known if there is ongoing CIN in medulloblastoma or if CIN affects the developing cerebellum and promotes tumor formation. To investigate this, we performed karyotyping of single medulloblastoma cells and demonstrated the presence of distinct tumor cell clones harboring unique copy number alterations, which is suggestive of ongoing CIN. We also found enrichment for processes related to DNA replication, repair, and mitosis in both SHH medulloblastoma and in the highly proliferative compartment of the presumed tumor cell lineage-of-origin, the latter also being sensitive to genotoxic stress. However, when challenging these tumor cells-of-origin with genetic lesions inducing CIN using transgenic mouse modeling, we found no evidence for large chromosomal aberrations in the cerebellum or for medulloblastoma formation. We therefore conclude that without a background of specific genetic mutations, CIN is not tolerated in the developing cerebellum in vivo and, thus, by itself is not sufficient to initiate medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Aneuploidia , Animales , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Cerebelo/metabolismo , Inestabilidad Cromosómica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA