Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 433-459, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30917003

RESUMEN

Antibodies are immunoglobulins that play essential roles in immune systems. All antibodies are glycoproteins that carry at least one or more conserved N-linked oligosaccharides (N-glycans) at the Fc domain. Many studies have demonstrated that both the presence and fine structures of the attached glycans can exert a profound impact on the biological functions and therapeutic efficacy of antibodies. However, antibodies usually exist as mixtures of heterogeneous glycoforms that are difficult to separate in pure glycoforms. Recent progress in glycoengineering has provided useful methods that enable production of glycan-defined and site-selectively modified antibodies for functional studies and for improved therapeutic efficacy. This review highlights major approaches in glycoengineering of antibodies with a focus on recent advances in three areas: glycoengineering through glycan biosynthetic pathway manipulation, glycoengineering through in vitro chemoenzymatic glycan remodeling, and glycoengineering of antibodies for site-specific antibody-drug conjugation.


Asunto(s)
Anticuerpos/metabolismo , Ingeniería de Proteínas/métodos , Animales , Anticuerpos/química , Glicoproteínas , Glicosilación , Humanos
2.
Mol Cell ; 75(2): 394-407.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31227230

RESUMEN

The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.


Asunto(s)
Ingeniería Genética , Redes y Vías Metabólicas/genética , Polisacáridos/química , Proteínas/genética , Epítopos/genética , Epítopos/inmunología , Glicosilación , Glicosiltransferasas/genética , Células HEK293 , Humanos , Oligosacáridos/genética , Polisacáridos/clasificación , Polisacáridos/genética , Polisacáridos/inmunología , Proteínas/inmunología
3.
Proc Natl Acad Sci U S A ; 120(36): e2302342120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639589

RESUMEN

Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).


Asunto(s)
Aldehído Deshidrogenasa , Anticuerpos , Humanos , Azidas , Carcinogénesis , Química Clic , Familia de Aldehído Deshidrogenasa 1 , Retinal-Deshidrogenasa
4.
Glycobiology ; 34(7)2024 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-38873803

RESUMEN

Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.


Asunto(s)
Linfocitos T CD4-Positivos , Células Dendríticas , Ácidos Siálicos , Sialiltransferasas , Factor de Necrosis Tumoral alfa , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ácidos Siálicos/metabolismo , Sistemas CRISPR-Cas , Antígenos CD/genética , Antígenos CD/metabolismo , Línea Celular , Diferenciación Celular , beta-D-Galactósido alfa 2-6-Sialiltransferasa
5.
Adv Funct Mater ; 34(17)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-39071865

RESUMEN

Cardiac arrest (CA)-induced cerebral ischemia remains challenging with high mortality and disability. Neural stem cell (NSC) engrafting is an emerging therapeutic strategy with considerable promise that, unfortunately, is severely compromised by limited cell functionality after in vivo transplantation. This groundbreaking report demonstrates that metabolic glycoengineering (MGE) using the "Ac5ManNTProp (TProp)" monosaccharide analog stimulates the Wnt/ß-catenin pathway, improves cell adhesion, and enhances neuronal differentiation in human NSCs in vitro thereby substantially increasing the therapeutic potential of these cells. For the first time, MGE significantly enhances NSC efficacy for treating ischemic brain injury after asphyxia CA in rats. In particular, neurological deficit scores and neurobehavioral tests experience greater improvements when the therapeutic cells are pretreated with TProp than with "stand-alone" NSC therapy. Notably, the TProp-NSC group exhibits significantly stronger neuroprotective functions including enhanced differentiation, synaptic plasticity, and reduced microglia recruitment; furthermore, Wnt pathway agonists and inhibitors demonstrate a pivotal role for Wnt signaling in the process. These findings help establish MGE as a promising avenue for addressing current limitations associated with NSC transplantation via beneficially influencing neural regeneration and synaptic plasticity, thereby offering enhanced therapeutic options to boost brain recovery following global ischemia.

6.
Plant Biotechnol J ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968612

RESUMEN

Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post-translational modifications like glycosylation of these Chlamydomonas-made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild-type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild-type strain demonstrated that the three N-glycosylation sites are 100% glycosylated with mature N-glycans containing four to five mannose residues and carrying core xylose, core fucose and O-methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N-linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N-glycosylation of the Chlamydomonas-made biologics.

7.
Plant Biotechnol J ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016470

RESUMEN

For several decades, a plant-based expression system has been proposed as an alternative platform for the production of biopharmaceuticals including therapeutic monoclonal antibodies (mAbs), but the immunogenicity concerns associated with plant-specific N-glycans attached in plant-based biopharmaceuticals has not been completely solved. To eliminate all plant-specific N-glycan structure, eight genes involved in plant-specific N-glycosylation were mutated in rice (Oryza sativa) using the CRISPR/Cas9 system. The glycoengineered cell lines, PhytoRice®, contained a predominant GnGn (G0) glycoform. The gene for codon-optimized trastuzumab (TMab) was then introduced into PhytoRice® through Agrobacterium co-cultivation. Selected cell lines were suspension cultured, and TMab secreted from cells was purified from the cultured media. The amino acid sequence of the TMab produced by PhytoRice® (P-TMab) was identical to that of TMab. The inhibitory effect of P-TMab on the proliferation of the BT-474 cancer cell line was significantly enhanced at concentrations above 1 µg/mL (****P < 0.0001). P-TMab bound to a FcγRIIIa variant, FcγRIIIa-F158, more than 2.7 times more effectively than TMab. The ADCC efficacy of P-TMab against Jurkat cells was 2.6 times higher than that of TMab in an in vitro ADCC assay. Furthermore, P-TMab demonstrated efficient tumour uptake with less liver uptake compared to TMab in a xenograft assay using the BT-474 mouse model. These results suggest that the glycoengineered PhytoRice® could be an alternative platform for mAb production compared to current CHO cells, and P-TMab has a novel and enhanced efficacy compared to TMab.

8.
Crit Rev Biotechnol ; 44(2): 191-201, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592990

RESUMEN

Protein glycosylation is the most complex posttranslational modification process. Most cellulases from filamentous fungi contain N-glycosylation and O-glycosylation. Here, we discuss the potential roles of glycosylation on the characteristics and function of cellulases. The use of certain cultivation, inducer, and alteration of engineering glycosylation pathway can enable the rational control of cellulase glycosylation. Glycosylation does not occur arbitrarily and may tend to modify the 3D structure of cellulases by using specially distributed glycans. Therefore, glycoengineering should be considered comprehensively along with the spatial structure of cellulases. Cellulase glycosylation may be an evolution phenomenon, which has been considered as an economical way for providing different functions from identical proteins. In addition to gene and transcription regulations, glycosylation may be another regulation on the protein expression level. Enhanced understanding of the potential regulatory role of cellulase glycosylation will enable synthetic biology approaches for the development of commercial cellulase.


Asunto(s)
Celulasa , Celulasas , Celulasa/química , Celulasa/genética , Celulasa/metabolismo , Glicosilación , Celulasas/química , Celulasas/genética , Celulasas/metabolismo , Hongos/metabolismo
9.
Microb Cell Fact ; 23(1): 72, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429691

RESUMEN

BACKGROUND: Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS: To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS: We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.


Asunto(s)
Escherichia coli , Fosfatos de Poliisoprenilo , Escherichia coli/genética , Polisacáridos , Biotecnología
10.
Bioorg Med Chem ; 110: 117828, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981219

RESUMEN

The approval of Trodelvy® validates TROP2 as a druggable but challenging target for antibody-drug conjugates (ADCs) to treat metastatic triple-negative breast cancer (mTNBC). Here, based on the TROP2-targeted antibody sacituzumab, we designed and developed several site-specific ADC candidates, which employ MMAE (monomethyl auristatin E) as the toxin, via IgG glycoengineering or affinity-directed traceless conjugation. Systematic evaluation of these site-specific ADCs in homogeneity, hydrophilicity, stability, and antitumor efficiency was conducted. The results indicate that the site-specific ADCs gsADC 3b made from one-step glycoengineering exhibit good aggregation stability and in vivo efficacy, providing a new format of ADCs that target TROP2.


Asunto(s)
Antígenos de Neoplasias , Antineoplásicos , Moléculas de Adhesión Celular , Diseño de Fármacos , Inmunoconjugados , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/inmunología , Animales , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Ratones , Femenino , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/farmacología , Oligopéptidos
11.
Bioorg Chem ; 147: 107304, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643563

RESUMEN

Increasing the selectivity of chemotherapies by converting them into prodrugs that can be activated at the tumour site decreases their side effects and allows discrimination between cancerous and non-cancerous cells. Herein, the use of metabolic glycoengineering (MGE) to selectively label MCF-7 breast cancer cells with tetrazine (Tz) activators for subsequent activation of prodrugs containing the trans-cyclooctene (TCO) moiety by a bioorthogonal reaction is demonstrated. Three novel Tz-modified monosaccharides, Ac4ManNTz 7, Ac4GalNTz 8, and Ac4SiaTz 16, were used for expression of the Tz activator within sialic-acid rich breast cancer cells' surface glycans through MGE. Tz expression on breast cancer cells (MCF-7) was evaluated versus the non-cancerous L929 fibroblasts showing a concentration-dependant effect and excellent selectivity with ≥35-fold Tz expression on the MCF-7 cells versus the non-cancerous L929 fibroblasts. Next, a novel TCO-N-mustard prodrug and a TCO-doxorubicin prodrug were analyzed in vitro on the Tz-bioengineered cells to probe our hypothesis that these could be activated via a bioorthogonal reaction. Selective prodrug activation and restoration of cytotoxicity were demonstrated for the MCF-7 breast cancer cells versus the non-cancerous L929 cells. Restoration of the parent drug's cytotoxicity was shown to be dependent on the level of Tz expression where the Ac4ManNTz 7 and Ac4GalNTz 8 derivatives (20 µM) lead to the highest Tz expression and full restoration of the parent drug's cytotoxicity. This work suggests the feasibility of combining MGE and tetrazine ligation for selective prodrug activation in breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Profármacos , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Femenino , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Células MCF-7 , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Ingeniería Metabólica , Supervivencia Celular/efectos de los fármacos
12.
J Nanobiotechnology ; 22(1): 461, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090622

RESUMEN

BACKGROUND: The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS: In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS: Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.


Asunto(s)
Antígeno B7-H1 , Química Clic , Inmunoterapia , Piroptosis , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antígeno B7-H1/metabolismo , Animales , Femenino , Inmunoterapia/métodos , Ratones , Piroptosis/efectos de los fármacos , Humanos , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Imagen Óptica/métodos , Profármacos/química , Profármacos/farmacología
13.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34551980

RESUMEN

As a common protein modification, asparagine-linked (N-linked) glycosylation has the capacity to greatly influence the biological and biophysical properties of proteins. However, the routine use of glycosylation as a strategy for engineering proteins with advantageous properties is limited by our inability to construct and screen large collections of glycoproteins for cataloguing the consequences of glycan installation. To address this challenge, we describe a combinatorial strategy termed shotgun scanning glycomutagenesis in which DNA libraries encoding all possible glycosylation site variants of a given protein are constructed and subsequently expressed in glycosylation-competent bacteria, thereby enabling rapid determination of glycosylatable sites in the protein. The resulting neoglycoproteins can be readily subjected to available high-throughput assays, making it possible to systematically investigate the structural and functional consequences of glycan conjugation along a protein backbone. The utility of this approach was demonstrated with three different acceptor proteins, namely bacterial immunity protein Im7, bovine pancreatic ribonuclease A, and human anti-HER2 single-chain Fv antibody, all of which were found to tolerate N-glycan attachment at a large number of positions and with relatively high efficiency. The stability and activity of many glycovariants was measurably altered by N-linked glycans in a manner that critically depended on the precise location of the modification. Structural models suggested that affinity was improved by creating novel interfacial contacts with a glycan at the periphery of a protein-protein interface. Importantly, we anticipate that our glycomutagenesis workflow should provide access to unexplored regions of glycoprotein structural space and to custom-made neoglycoproteins with desirable properties.


Asunto(s)
Asparagina/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Ribonucleasa Pancreática/metabolismo , Anticuerpos de Cadena Única/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Bovinos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Humanos , Polisacáridos/química , Polisacáridos/genética , Conformación Proteica , Ingeniería de Proteínas , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/genética , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
14.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301864

RESUMEN

The dynamic change of cell-surface glycans is involved in diverse biological and pathological events such as oncogenesis and metastasis. Despite tremendous efforts, it remains a great challenge to selectively distinguish and label glycans of different cancer cells or cancer subtypes. Inspired by biomimetic cell membrane-coating technology, herein, we construct pH-responsive azidosugar liposomes camouflaged with natural cancer-cell membrane for tumor cell-selective glycan engineering. With cancer cell-membrane camouflage, the biomimetic liposomes can prevent protein corona formation and evade phagocytosis of macrophages, facilitating metabolic glycans labeling in vivo. More importantly, due to multiple membrane receptors, the biomimetic liposomes have prominent cell selectivity to homotypic cancer cells, showing higher glycan-labeling efficacy than a single-ligand targeting strategy. Further in vitro and in vivo experiments indicate that cancer cell membrane-camouflaged azidosugar liposomes not only realize cell-selective glycan imaging of different cancer cells and triple-negative breast cancer subtypes but also do well in labeling metastatic tumors. Meanwhile, the strategy is also applicable to the use of tumor tissue-derived cell membranes, which shows the prospect for individual diagnosis and treatment. This work may pave a way for efficient cancer cell-selective engineering and visualization of glycans in vivo.


Asunto(s)
Biomimética/métodos , Neoplasias de la Mama/patología , Membrana Celular/metabolismo , Liposomas/metabolismo , Neoplasias Pulmonares/secundario , Fagocitosis , Polisacáridos/análisis , Animales , Apoptosis , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Ingeniería Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Nanopartículas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Angew Chem Int Ed Engl ; 63(20): e202401921, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38498603

RESUMEN

In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.


Asunto(s)
Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Microburbujas , Ingeniería Metabólica
16.
J Biol Chem ; 298(4): 101784, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247390

RESUMEN

Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom-up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom-up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.


Asunto(s)
Mucinas , Secuencia de Aminoácidos , Animales , Glicosilación , Células HEK293 , Humanos , Mucinas/metabolismo , Polisacáridos/genética , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ovinos
17.
J Biol Chem ; 298(1): 101454, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838817

RESUMEN

Glycoproteins are difficult to crystallize because they have heterogeneous glycans composed of multiple monosaccharides with considerable rotational freedom about their O-glycosidic linkages. Crystallographers studying N-glycoproteins often circumvent this problem by using ß1,2-N-acetylglucosaminyltransferase I (MGAT1)-deficient mammalian cell lines, which produce recombinant glycoproteins with immature N-glycans. These glycans support protein folding and quality control but can be removed using endo-ß-N-acetylglucosaminidase H (Endo H). Many crystallographers also use the baculovirus-insect cell system (BICS) to produce recombinant proteins for their work but have no access to an MGAT1-deficient insect cell line to facilitate glycoprotein crystallization in this system. Thus, we used BICS-specific CRISPR-Cas9 vectors to edit the Mgat1 gene of a rhabdovirus-negative Spodoptera frugiperda cell line (Sf-RVN) and isolated a subclone with multiple Mgat1 deletions, which we named Sf-RVNLec1. We found that Sf-RVN and Sf-RVNLec1 cells had identical growth properties and served equally well as hosts for baculovirus-mediated recombinant glycoprotein production. N-glycan profiling showed that a total endogenous glycoprotein fraction isolated from Sf-RVNLec1 cells had only immature and high mannose-type N-glycans. Finally, N-glycan profiling and endoglycosidase analyses showed that the vast majority of the N-glycans on three recombinant glycoproteins produced by Sf-RVNLec1 cells were Endo H-cleavable Man5GlcNAc2 structures. Thus, this study yielded a new insect cell line for the BICS that can be used to produce recombinant glycoproteins with Endo H-cleavable N-glycans. This will enable researchers to combine the high productivity of the BICS with the ability to deglycosylate recombinant glycoproteins, which will facilitate efforts to determine glycoprotein structures by X-ray crystallography.


Asunto(s)
Baculoviridae , Línea Celular , Insectos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sistemas CRISPR-Cas , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Humanos , Insectos/citología , Insectos/genética , Insectos/metabolismo , Polisacáridos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
18.
Glycobiology ; 33(2): 126-137, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36370046

RESUMEN

Glycans of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein are speculated to play functional roles in the infection processes as they extensively cover the protein surface and are highly conserved across the variants. The spike protein has been the principal target for vaccine and therapeutic development while the exact effects of its glycosylation remain elusive. Analytical reports have described the glycan heterogeneity of the spike protein. Subsequent molecular simulation studies provided a knowledge basis of the glycan functions. However, experimental data on the role of discrete glycoforms on the spike protein pathobiology remains scarce. Building an understanding of their roles in SARS-CoV-2 is important as we continue to develop effective medicines and vaccines to combat the disease. Herein, we used designed combinations of glycoengineering enzymes to simplify and control the glycosylation profile of the spike protein receptor-binding domain (RBD). Measurements of the receptor-binding affinity revealed opposite regulatory effects of the RBD glycans with and without sialylation, which presents a potential strategy for modulating the spike protein behaviors through glycoengineering. Moreover, we found that the reported anti-SARS-CoV-(2) antibody, S309, neutralizes the impact of different RBD glycoforms on the receptor-binding affinity. In combination with molecular dynamics simulation, this work reports the regulatory roles that glycosylation plays in the interaction between the viral spike protein and host receptor, providing new insights into the nature of SARS-CoV-2. Beyond this study, enzymatic glycan remodeling offers the opportunity to understand the fundamental role of specific glycoforms on glycoconjugates across molecular biology.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Simulación de Dinámica Molecular , Polisacáridos
19.
Glycobiology ; 33(11): 888-910, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-37956415

RESUMEN

All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.


Asunto(s)
Glicosiltransferasas , Polisacáridos , Humanos , Glicosiltransferasas/metabolismo , Glicosilación , Polisacáridos/química , Glicoproteínas/metabolismo , Glicómica
20.
Glycobiology ; 33(10): 784-800, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37471650

RESUMEN

Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases ß-1,3-N-acetylglucosaminyltransferase and ß-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of ß-1,3-N-acetylglucosaminyltransferase and ß-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the ß-1,3-N-acetylglucosaminyltransferase and/or ß-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-ß-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Animales , Perros , Subtipo H3N2 del Virus de la Influenza A/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetil-Lactosamina Sintasa/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza , Virus de la Influenza A/metabolismo , Células de Riñón Canino Madin Darby , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA