Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107271, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588813

RESUMEN

Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.


Asunto(s)
Enfermedad de Lafora , Proteínas Tirosina Fosfatasas no Receptoras , Ubiquitina-Proteína Ligasas , Enfermedad de Lafora/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Humanos , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Modelos Animales de Enfermedad , Glucógeno/metabolismo , Glucógeno/genética
2.
Brain ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045638

RESUMEN

Late-onset Pompe Disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction due to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage - a classic manifestation of the disease - has been extensively studied by analysing the whole muscle tissue; however, little, if any, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single nuclei RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age and gender matched healthy controls. We matched these changes with histology findings using GeoMx Spatial Transcriptomics to compare the transcriptome of control myofibers from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibers of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibers and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibers, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes, and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. The upregulation of the genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibers. Notably, enzyme replacement therapy - the only available therapy for the disease - showed a tendency to restore metabolism dysregulation, particularly within slow fibers. A combination of single nuclei RNA sequencing and spatial transcriptomics revealed the landscape of normal and the diseased muscle, and highlighted the early abnormalities associated with the disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.

3.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678201

RESUMEN

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glucógeno Fosforilasa de Forma Muscular , Animales , Bovinos , Femenino , Masculino , Enfermedades de los Bovinos/genética , Genes Recesivos , Glucógeno Fosforilasa de Forma Muscular/genética , Glucógeno Fosforilasa de Forma Muscular/deficiencia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
4.
Magn Reson Med ; 91(3): 1115-1121, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009988

RESUMEN

PURPOSE: Glycogen storage disease type III (GSD III) is a rare inherited metabolic disease characterized by excessive accumulation of glycogen in liver, skeletal muscle, and heart. Currently, there are no widely available noninvasive methods to assess tissue glycogen levels and disease load. Here, we use glycogen nuclear Overhauser effect (glycoNOE) MRI to quantify hepatic glycogen levels in a mouse model of GSD III. METHODS: Agl knockout mice (n = 13) and wild-type controls (n = 10) were scanned for liver glycogen content using glycoNOE MRI. All mice were fasted for 12 to 16 h before MRI scans. GlycoNOE signal was quantified by fitting the Z-spectrum using a four-pool Voigt lineshape model. Next, the fitted direct water saturation pool was removed and glycoNOE signal was estimated from the integral of the residual Z spectrum within -0.6 to -1.4 ppm. Glycogen concentration was also measured ex vivo using a biochemical assay. RESULTS: GlycoNOE MRI clearly distinguished Agl knockout mice from wild-type controls, showing a statistically significant difference in glycoNOE signals in the livers across genotypes. There was a linear correlation between glycoNOE signal and glycogen concentration determined by the biochemical assay. The obtained glycoNOE maps of mouse livers also showed higher glycogen levels in Agl knockout mice compared to wild-type mice. CONCLUSION: GlycoNOE MRI was used successfully as a noninvasive method to detect liver glycogen levels in mice, suggesting the potential of this method to be applied to assess glycogen storage diseases.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo III , Animales , Ratones , Enfermedad del Almacenamiento de Glucógeno Tipo III/diagnóstico por imagen , Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Glucógeno/metabolismo , Glucógeno Hepático , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Ratones Noqueados
5.
Mol Genet Metab ; 143(1-2): 108573, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39243574

RESUMEN

BACKGROUND: Cohort data on continuous glucose monitoring (CGM) metrics are scarce for liver glycogen storage diseases (GSDs) and idiopathic ketotic hypoglycemia (IKH). The aim of this study was to retrospectively describe CGM metrics for people with liver GSDs and IKH. PATIENTS AND METHODS: CGM metrics (descriptive, glycemic variation and glycemic control parameters) were calculated for 47 liver GSD and 14 IKH patients, categorized in cohorts by disease subtype, age and treatment status, and compared to published age-matched CGM metrics from healthy individuals. Glycemic control was assessed as time-in-range (TIR; ≥3.9 - ≤7.8 and ≥3.9 - ≤10.0 mmol/L), time-below-range (TBR; <3.0 mmol/L and ≥3.0 - ≤3.9 mmol/L), and time-above-range (TAR; >7.8 and >10.0 mmol/L). RESULTS: Despite all patients receiving dietary treatment, GSD cohorts displayed significantly different CGM metrics compared to healthy individuals. Decreased TIR together with increased TAR were noted in GSD I, GSD III, and GSD XI (Fanconi-Bickel syndrome) cohorts (all p < 0.05). In addition, all GSD I cohorts showed increased TBR (all p < 0.05). In GSD IV an increased TBR (p < 0.05) and decreased TAR were noted (p < 0.05). In GSD IX only increased TAR was observed (p < 0.05). IKH patient cohorts, both with and without treatment, presented CGM metrics similar to healthy individuals. CONCLUSION: Despite dietary treatment, most liver GSD cohorts do not achieve CGM metrics comparable to healthy individuals. International recommendations on the use of CGM and clinical targets for CGM metrics in liver GSD patients are warranted, both for patient care and clinical trials.

6.
Mol Genet Metab ; 142(2): 108486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733639

RESUMEN

Empagliflozin has been successfully repurposed for treating neutropenia and neutrophil dysfunction in patients with glycogen storage disease type 1b (GSD 1b), however, data in infants are missing. We report on efficacy and safety of empagliflozin in infants with GSD 1b. This is an international retrospective case series on 21 GSD 1b infants treated with empagliflozin (total treatment time 20.6 years). Before starting empagliflozin (at a median age of 8.1 months with a median dose of 0.3 mg/kg/day) 12 patients had clinical signs and symptoms of neutrophil dysfunction. Six of these previously symptomatic patients had no further neutropenia/neutrophil dysfunction-associated findings on empagliflozin. Eight patients had no signs and symptoms of neutropenia/neutrophil dysfunction before start and during empagliflozin treatment. One previously asymptomatic individual with a horseshoe kidney developed a central line infection with pyelonephritis and urosepsis during empagliflozin treatment. Of the 10 patients who were treated with G-CSF before starting empagliflozin, this was stopped in four and decreased in another four. Eleven individuals were never treated with G-CSF. While in 17 patients glucose homeostasis remained stable on empagliflozin, four showed glucose homeostasis instability in the introductory phase. In 17 patients, no other side effects were reported, while genital (n = 2) or oral (n = 1) candidiasis and skin infection (n = 1) were reported in the remaining four. Empagliflozin had a good effect on neutropenia/neutrophil dysfunction-related signs and symptoms and a favourable safety profile in infants with GSD 1b and therefore qualifies for further exploration as first line treatment.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Enfermedad del Almacenamiento de Glucógeno Tipo I , Neutropenia , Neutrófilos , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo I/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Neutropenia/tratamiento farmacológico , Masculino , Femenino , Lactante , Compuestos de Bencidrilo/uso terapéutico , Compuestos de Bencidrilo/administración & dosificación , Estudios Retrospectivos , Neutrófilos/efectos de los fármacos , Glucósidos/uso terapéutico , Glucósidos/farmacología , Glucósidos/administración & dosificación , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Resultado del Tratamiento , Factor Estimulante de Colonias de Granulocitos/uso terapéutico
7.
Neuropathol Appl Neurobiol ; 50(3): e12995, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923610

RESUMEN

AIMS: Polyglucosan storage disorders represent an emerging field within neurodegenerative and neuromuscular conditions, including Lafora disease (EPM2A, EPM2B), adult polyglucosan body disease (APBD, GBE1), polyglucosan body myopathies associated with RBCK1 deficiency (PGBM1, RBCK1) or glycogenin-1 deficiency (PGBM2, GYG1). While the storage material primarily comprises glycans, this study aimed to gain deeper insights into the protein components by proteomic profiling of the storage material in glycogenin-1 deficiency. METHODS: We employed molecular genetic analyses, quantitative mass spectrometry of laser micro-dissected polyglucosan bodies and muscle homogenate, immunohistochemistry and western blot analyses in muscle tissue from a 45-year-old patient with proximal muscle weakness from late teenage years due to polyglucosan storage myopathy. RESULTS: The muscle tissue exhibited a complete absence of glycogenin-1 due to a novel homozygous deep intronic variant in GYG1 (c.7+992T>G), introducing a pseudo-exon causing frameshift and a premature stop codon. Accumulated proteins in the polyglucosan bodies constituted components of glycogen metabolism, protein quality control pathways and desmin. Muscle fibres containing polyglucosan bodies frequently exhibited depletion of normal glycogen. CONCLUSIONS: The absence of glycogenin-1, a protein important for glycogen synthesis initiation, causes storage of polyglucosan that displays accumulation of several proteins, including those essential for glycogen synthesis, sequestosome 1/p62 and desmin, mirroring findings in RBCK1 deficiency. These results suggest shared pathogenic pathways across different diseases exhibiting polyglucosan storage. Such insights have implications for therapy in these rare yet devastating and presently untreatable disorders.


Asunto(s)
Glucanos , Enfermedad del Almacenamiento de Glucógeno , Músculo Esquelético , Proteómica , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Persona de Mediana Edad , Glucanos/metabolismo , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/patología , Masculino , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/genética , Glucosiltransferasas , Glicoproteínas , Enfermedades del Sistema Nervioso
8.
Rev Endocr Metab Disord ; 25(4): 707-725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38556561

RESUMEN

Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifestations of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamic­pituitary axis dysfunction in GSD I) can be direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD III) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Humanos , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Hepatopatías/metabolismo , Hepatopatías/fisiopatología , Hepatopatías/etiología , Enfermedades del Sistema Endocrino/metabolismo , Enfermedades del Sistema Endocrino/fisiopatología , Hígado/metabolismo , Hígado/fisiopatología
9.
Am J Med Genet A ; 194(7): e63574, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38436530

RESUMEN

RBCK1-related disease is a rare, multisystemic disorder for which our current understanding of the natural history is limited. A number of individuals initially carried clinical diagnoses of glycogen storage disease IV (GSD IV), but were later found to harbor RBCK1 pathogenic variants, demonstrating challenges of correctly diagnosing RBCK1-related disease. This study carried out a phenotypic comparison between RBCK1-related disease and GSD IV to identify features that clinically differentiate these diagnoses. Literature review and retrospective chart review identified 25 individuals with RBCK1-related disease and 36 with the neuromuscular subtype of GSD IV. Clinical features were evaluated to assess for statistically significant differences between the conditions. At a system level, any cardiac, autoinflammation, immunodeficiency, growth, or dermatologic involvement were suggestive of RBCK1, whereas any respiratory involvement suggested GSD IV. Several features warrant further exploration as predictors of RBCK1, such as generalized weakness, heart transplant, and recurrent infections, among others. Distinguishing RBCK1-related disease will facilitate correct diagnoses and pave the way for accurately identifying affected individuals, as well as for developing management recommendations, treatment, and an enhanced understanding of the natural history. This knowledge may also inform which individuals thought to have GSD IV should undergo reevaluation for RBCK1.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV , Fenotipo , Humanos , Femenino , Masculino , Niño , Preescolar , Adolescente , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo IV/patología , Lactante , Mutación/genética , Adulto , Estudios Retrospectivos , Adulto Joven
10.
J Inherit Metab Dis ; 47(1): 93-118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37421310

RESUMEN

Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedad del Almacenamiento de Glucógeno Tipo I , Enfermedad del Almacenamiento de Glucógeno , Neoplasias Hepáticas , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/terapia , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Hígado/metabolismo , Glucógeno/metabolismo , Terapia Genética/métodos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología
11.
J Inherit Metab Dis ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623712

RESUMEN

Dietary lipid manipulation has recently been proposed for managing glycogen storage disease (GSD) type IIIa. This study aimed to evaluate the myopathic, cardiac, and metabolic status, physical activity, growth, and dietary compliance of a personalized diet high in protein and fat for 24 months. Of 31 patients with type IIIa GSD, 12 met the inclusion criteria. Of these, 10 patients (mean age 11.2 ± 7.4 years) completed the study. Patients were prescribed a personalized high-protein, high-fat diet, comprising 3.0-3.5 g/kg/day of protein and 3.0-4.5 g/kg/day of fat, constituting 18.5%-28% and 70.5%-75.7% of daily energy, respectively. Dietary compliance was ensured and assessed via the regular administration of questionnaires. Our results revealed consistent and significant decreases of 22%, 54%, and 30% in the creatinine kinase, creatine kinase-myocardial band, and lactate dehydrogenase levels, respectively. Echocardiography revealed improvements in the Z-scores of the left ventricular mass and interventricular septum thickness. A significant increase in body muscle mass was observed, and a higher score was achieved using the Daily Activity Questionnaire. Growth monitoring revealed an arrest in the height-SDS at the 6th and 12th months, followed by subsequent improvement at the end of the second year. A gradual and persistent decline in the periods of hypo- and hyperglycemia has been reported. Biotinidase activity decreased, whereas hepatosteatosis increased and then decreased by the end of the study. Implementing a high-protein, high-fat diet and monitoring key parameters in patients with type IIIa GSD can lead to myopathic and cardiac improvements and increased physical activity.

12.
J Inherit Metab Dis ; 47(2): 244-254, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185897

RESUMEN

Off-label repurposing of empagliflozin allows pathomechanism-based treatment of neutropenia/neutrophil-dysfunction in glycogen storage disease type Ib (GSDIb). From a value-based healthcare (VBHC) perspective, we here retrospectively studied patient-reported, clinical and pharmacoeconomic outcomes in 11 GSDIb individuals before and under empagliflozin at two centers (the Netherlands [NL], Austria [AT]), including a budget impact analysis, sensitivity-analysis, and systematic benefit-risk assessment. Under empagliflozin, all GSDIb individuals reported improved quality-of-life-scores. Neutrophil dysfunction related symptoms allowed either granulocyte colony-stimulating factor cessation or tapering. Calculated cost savings per patient per year ranged between € 6482-14 190 (NL) and € 1281-41 231 (AT). The budget impact analysis estimated annual total cost savings ranging between € 75 062-225 716 (NL) and € 37 697-231 790 (AT), based on conservative assumptions. The systematic benefit-risk assessment was favorable. From a VBHC perspective, empagliflozin treatment in GSDIb improved personal and clinical outcomes while saving costs, thereby creating value at multiple pillars. We emphasize the importance to reimburse empagliflozin for GSDIb individuals, further supported by the favorable systematic benefit-risk assessment. These observations in similar directions in two countries/health care systems strongly suggest that our findings can be extrapolated to other geographical areas and health care systems.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Enfermedad del Almacenamiento de Glucógeno Tipo I , Atención Médica Basada en Valor , Humanos , Estudios Retrospectivos , Medición de Riesgo
13.
Mol Ther ; 31(7): 1994-2004, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36805083

RESUMEN

Gene therapy with an adeno-associated virus serotype 8 (AAV8) vector (AAV8-LSPhGAA) could eliminate the need for enzyme replacement therapy (ERT) by creating a liver depot for acid α-glucosidase (GAA) production. We report initial safety and bioactivity of the first dose (1.6 × 1012 vector genomes/kg) cohort (n = 3) in a 52-week open-label, single-dose, dose-escalation study (NCT03533673) in patients with late-onset Pompe disease (LOPD). Subjects discontinued biweekly ERT after week 26 based on the detection of elevated serum GAA activity and the absence of clinically significant declines per protocol. Prednisone (60 mg/day) was administered as immunoprophylaxis through week 4, followed by an 11-week taper. All subjects demonstrated sustained serum GAA activities from 101% to 235% of baseline trough activity 2 weeks following the preceding ERT dose. There were no treatment-related serious adverse events. No subject had anti-capsid T cell responses that decreased transgene expression. Muscle biopsy at week 24 revealed unchanged muscle glycogen content in two of three subjects. At week 52, muscle GAA activity for the cohort was significantly increased (p < 0.05). Overall, these initial data support the safety and bioactivity of AAV8-LSPhGAA, the safety of withdrawing ERT, successful immunoprophylaxis, and justify continued clinical development of AAV8-LSPhGAA therapy in Pompe disease.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , Anticuerpos/genética , Terapia de Reemplazo Enzimático/métodos , Terapia Genética/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Hígado/metabolismo
14.
Cell Mol Life Sci ; 80(9): 259, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594549

RESUMEN

Neutropenia and neutrophil dysfunction in glycogen storage disease type 1b (GSD1b) and severe congenital neutropenia type 4 (SCN4), associated with deficiencies of the glucose-6-phosphate transporter (G6PT/SLC37A4) and the phosphatase G6PC3, respectively, are the result of the accumulation of 1,5-anhydroglucitol-6-phosphate in neutrophils. This is an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol in blood. 1,5-AG is presumed to be reabsorbed in the kidney by a sodium-dependent-transporter of uncertain identity, possibly SGLT4/SLC5A9 or SGLT5/SLC5A10. Lowering blood 1,5-AG with an SGLT2-inhibitor greatly improved neutrophil counts and function in G6PC3-deficient and GSD1b patients. Yet, this effect is most likely mediated indirectly, through the inhibition of the renal 1,5-AG transporter by glucose, when its concentration rises in the renal tubule following inhibition of SGLT2. To identify the 1,5-AG transporter, both human and mouse SGLT4 and SGLT5 were expressed in HEK293T cells and transport measurements were performed with radiolabelled compounds. We found that SGLT5 is a better carrier for 1,5-AG than for mannose, while the opposite is true for human SGLT4. Heterozygous variants in SGLT5, associated with a low level of blood 1,5-AG in humans cause a 50-100% reduction in 1,5-AG transport activity tested in model cell lines, indicating that SGLT5 is the predominant kidney 1,5-AG transporter. These and other findings led to the conclusion that (1) SGLT5 is the main renal transporter of 1,5-AG; (2) frequent heterozygous mutations (allelic frequency > 1%) in SGLT5 lower blood 1,5-AG, favourably influencing neutropenia in G6PC3 or G6PT deficiency; (3) the effect of SGLT2-inhibitors on blood 1,5-AG level is largely indirect; (4) specific SGLT5-inhibitors would be more efficient to treat these neutropenias than SGLT2-inhibitors.


Asunto(s)
Neutropenia , Animales , Humanos , Ratones , Antiportadores , Células HEK293 , Riñón , Proteínas de Transporte de Membrana , Proteínas de Transporte de Monosacáridos/genética , Neutropenia/genética , Transportador 2 de Sodio-Glucosa/genética
15.
Neuropathology ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922716

RESUMEN

Glycogen storage diseases (GSDs) are a group of metabolic disorders affecting glycogen metabolism, with polyglucosan body myopathy type 1 (PGBM1) being a rare variant linked to RBCK1 gene mutations. Understanding the clinical diversity of PGBM1 aids in better characterization of the disease. Two unrelated Iranian families with individuals exhibiting progressive muscle weakness underwent clinical evaluations, genetic analysis using whole exome sequencing (WES), and histopathological examinations of muscle biopsies. In one case, a novel homozygous RBCK1 variant was identified, presenting with isolated myopathy without cardiac or immune involvement. Conversely, the second case harbored a known homozygous RBCK1 variant, displaying a broader phenotype encompassing myopathy, cardiomyopathy, inflammation, and immunodeficiency. Histopathological analyses confirmed characteristic skeletal muscle abnormalities consistent with PGBM1. Our study contributes to the expanding understanding of RBCK1-related diseases, illustrating the spectrum of phenotypic variability associated with distinct RBCK1 variants. These findings underscore the importance of genotype-phenotype correlations in elucidating disease mechanisms and guiding clinical management. Furthermore, the utility of next-generation sequencing techniques in diagnosing complex neurogenetic disorders is emphasized, facilitating precise diagnosis and enabling tailored genetic counseling for affected individuals and their families.

16.
BMC Pediatr ; 24(1): 161, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454379

RESUMEN

BACKGROUND: Fanconi-Bickel syndrome is characterized by hepatorenal disease caused by anomalous glycogen storage. It occurs due to variants in the SLC2A2 gene. We present a male patient of 2 years 7 months old, with failure to thrive, hepatomegaly, metabolic acidosis, hypophosphatemia, hypokalemia, hyperlactatemia. RESULTS: Exome sequencing identified the homozygous pathogenic variant NM_000340.2(SLC2A2):c.1093 C > T (p.Arg365Ter), related with Fanconi-Bickel syndrome. He received treatment with bicarbonate, amlodipine, sodium citrate and citric acid solution, enalapril, alendronate and zolendronate, and nutritional management with uncooked cornstarch, resulting in an improvement of one standard deviation in weight and height. CONCLUSIONS: The importance of knowing the etiology in rare genetic disease is essential, not only to determine individual and familial recurrence risk, but also to establish the treatment and prognosis; in this sense, access to a new genomic technology in low- and middle-income countries is essential to shorten the diagnostic odyssey.


Asunto(s)
Síndrome de Fanconi , Humanos , Masculino , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Homocigoto , Pronóstico , Preescolar
17.
BMC Pediatr ; 24(1): 194, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500078

RESUMEN

BACKGROUND: Pompe disease, classified as glycogen storage disease type II, arises from a deficiency in the acid alpha-glucosidase (GAA) enzyme, leading to glycogen accumulation in multiple tissues. The unique correlation between genotype and enzyme activity is a key feature. This case highlights an infantile-onset form, emphasizing genetic counseling and prenatal testing importance. CASE PRESENTATION: An 18-week-old infant with respiratory distress, cyanosis, and fever was admitted. Born healthy, her sibling died from Pompe disease. She presented with cardiomegaly, hypotonia, and absent reflexes. Diagnosis was confirmed by significantly reduced GAA activity. Despite treatment initiation, the patient succumbed to cardiac arrest. CONCLUSIONS: The case underscores genetic counseling's role, offering insights into prenatal testing advancements, antenatal diagnosis through echocardiography, and the significance of early intervention, particularly in infantile-onset Pompe disease. SYNOPSIS: Genetic risk assessment and prenatal testing are crucial for families with a history of Pompe disease to improve early diagnosis and management outcomes.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , Lactante , alfa-Glucosidasas/genética , Asesoramiento Genético , Genotipo , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Hipotonía Muscular
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 636-640, 2024 Aug.
Artículo en Zh | MEDLINE | ID: mdl-39223030

RESUMEN

Glycogen storage diseases (GSDs) are a group of autosomal recessive disorders of glucose metabolism.GSDs are caused by congenital deficiency of enzymes in glycogen synthesis or decomposition,which results in glycogen accumulation in organs.According to the types of enzyme deficiency,GSDs can be classified into more than ten types,among which GSD Ⅻ is a super-rare type of GSD.Two brothers with a 5-year age difference presented severe neonatal asphyxia,myasthenia,myocardial damage,anemia,and mental retardation,being GSD Ⅻ homozygous cases with neonatal onset.The results of gene detection showed that nucleotide and amino acid alterations (c.619G>A,p.E207K) of the ALDOA gene existed in the two brothers,being homozygous,and the genotypes in the parents were heterozygous.This article summarized the clinical features,diagnosis,and treatment of GSD Ⅻ,providing reference for exploring the etiology and treatment of severe asphyxia,myasthenia,anemia,and multiple organ damage in neonates after birth.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Humanos , Masculino , Recién Nacido , Preescolar , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Hermanos , Mutación
19.
J Biol Chem ; 298(1): 101520, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34952005

RESUMEN

Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.


Asunto(s)
Glucosa-6-Fosfatasa , Enfermedad del Almacenamiento de Glucógeno Tipo I , Animales , Dominio Catalítico , Glucosa/metabolismo , Glucosa-6-Fosfatasa/química , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/enzimología , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Ratones , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo
20.
J Neurochem ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37554056

RESUMEN

Glycogen is a biologically essential macromolecule that is directly involved in multiple human diseases. While its primary role in carbohydrate storage and energy metabolism in the liver and muscle is well characterized, recent research has highlighted critical metabolic and non-metabolic roles for glycogen in the brain. In this review, the emerging roles of glycogen homeostasis in the healthy and diseased brain are discussed with a focus on advancing our understanding of the role of glycogen in the brain. Innovative technologies that have led to novel insights into glycogen functions are detailed. Key insights into how cellular localization impacts neuronal and glial function are discussed. Perturbed glycogen functions are observed in multiple disorders of the brain, including where it serves as a disease driver in the emerging category of neurological glycogen storage diseases (n-GSDs). n-GSDs include Lafora disease (LD), adult polyglucosan body disease (APBD), Cori disease, Glucose transporter type 1 deficiency syndrome (G1D), GSD0b, and late-onset Pompe disease (PD). They are neurogenetic disorders characterized by aberrant glycogen which results in devastating neurological and systemic symptoms. In the most severe cases, rapid neurodegeneration coupled with dementia results in death soon after diagnosis. Finally, we discuss current treatment strategies that are currently being developed and have the potential to be of great benefit to patients with n-GSD. Taken together, novel technologies and biological insights have resulted in a renaissance in brain glycogen that dramatically advanced our understanding of both biology and disease. Future studies are needed to expand our understanding and the multifaceted roles of glycogen and effectively apply these insights to human disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA