Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Physiol ; 234(4): 3744-3761, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146765

RESUMEN

Hepatocyte-like cells (HLCs) differentiated from human-induced pluripotent stem cells offer an alternative platform to primary human hepatocytes (PHHs) for studying the lipid metabolism of the liver. However, despite their great potential, the lipid profile of HLCs has not yet been characterized. Here, we comprehensively studied the lipid profile and fatty acid (FA) metabolism of HLCs and compared them with the current standard hepatocyte models: HepG2 cells and PHHs. We differentiated HLCs by five commonly used methods from three cell lines and thoroughly characterized them by gene and protein expression. HLCs generated by each method were assessed for their functionality and the ability to synthesize, elongate, and desaturate FAs. In addition, lipid and FA profiles of HLCs were investigated by both mass spectrometry and gas chromatography and then compared with the profiles of PHHs and HepG2 cells. HLCs resembled PHHs by expressing hepatic markers: secreting albumin, lipoprotein particles, and urea, and demonstrating similarities in their lipid and FA profile. Unlike HepG2 cells, HLCs contained low levels of lysophospholipids similar to the content of PHHs. Furthermore, HLCs were able to efficiently use the exogenous FAs available in their medium and simultaneously modify simple lipids into more complex ones to fulfill their needs. In addition, we propose that increasing the polyunsaturated FA supply of the culture medium may positively affect the lipid profile and functionality of HLCs. In conclusion, our data showed that HLCs provide a functional and relevant model to investigate human lipid homeostasis at both molecular and cellular levels.


Asunto(s)
Diferenciación Celular , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Metabolismo de los Lípidos , Forma de la Célula , Cromatografía de Gases , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Metabolismo de los Lípidos/genética , Lipidómica/métodos , Lisofosfolípidos/metabolismo , Espectrometría de Masas , Fenotipo , Cultivo Primario de Células
2.
Cells ; 12(19)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37830581

RESUMEN

Induced pluripotent stem cell (iPSC) technology enables differentiation of human hepatocytes or hepatocyte-like cells (iPSC-HLCs). Advances in 3D culturing platforms enable the development of more in vivo-like liver models that recapitulate the complex liver architecture and functionality better than traditional 2D monocultures. Moreover, within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation and maintenance of hepatocyte metabolic function. Thus, models combining 3D culture and co-culturing of various cell types potentially create more functional in vitro liver models than 2D monocultures. Here, we report the establishment of 3D cultures of iPSC-HLCs alone and in co-culture with human umbilical vein endothelial cells (HUVECs) and adipose tissue-derived mesenchymal stem/stromal cells (hASCs). The 3D cultures were performed as spheroids or on microfluidic chips utilizing various biomaterials. Our results show that both 3D spheroid and on-chip culture enhance the expression of mature liver marker genes and proteins compared to 2D. Among the spheroid models, we saw the best functionality in iPSC-HLC monoculture spheroids. On the contrary, in the chip system, the multilineage model outperformed the monoculture chip model. Additionally, the optical projection tomography (OPT) and electrical impedance tomography (EIT) system revealed changes in spheroid size and electrical conductivity during spheroid culture, suggesting changes in cell-cell connections. Altogether, the present study demonstrates that iPSC-HLCs can successfully be cultured in 3D as spheroids and on microfluidic chips, and co-culturing iPSC-HLCs with NPCs enhances their functionality. These 3D in vitro liver systems are promising human-derived platforms usable in various liver-related studies, specifically when using patient-specific iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales , Hepatocitos/metabolismo , Hígado , Técnicas de Cultivo de Célula/métodos
3.
Methods Mol Biol ; 2429: 127-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507159

RESUMEN

Hepatocyte-like cells (HLCs) generated from human induced pluripotent stem cells (iPSCs) could provide an unlimited source of liver cells for regenerative medicine, disease modeling, drug screening, and toxicology studies. Here we describe a stepwise improved protocol that enables highly efficient, homogeneous, and reproducible differentiation of human iPSCs into functional hepatocytes through controlling all three stages of hepatocyte differentiation, starting from a single cell (non-colony) culture of iPSCs, through homogeneous definitive endoderm induction and highly efficient hepatic specification, and finally arriving at matured HLCs. The final population of cells exhibits morphology closely resembling that of primary human hepatocytes, and expresses specific hepatic markers as evidenced by immunocytochemical staining. More importantly, these HLCs demonstrate key functional characteristics of mature hepatocytes, including major serum protein (e.g., albumin, fibronectin, and alpha-1 antitrypsin) secretion, urea synthesis, glycogen storage, and inducible cytochrome P450 activity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Biomarcadores/metabolismo , Diferenciación Celular , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo
4.
Stem Cell Res ; 61: 102763, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395623

RESUMEN

Research in the field of hepatology is limited by the incomplete recapitulation of all major aspects of human hepatic metabolism in most established models. This restricts our ability to study the molecular mechanisms underlying hepatic diseases, and it leads to inadequate assessment of toxicology during drug development, resulting in tremendous unnecessary costs for the pharma industry. Animal models differ in their metabolism compared to the human system, while primary human cells dedifferentiate rapidly and are not suitable for long-term culture and studies. To overcome these obstacles, several protocols for in vitro differentiation of pluripotent stem cells into hepatocyte like cells (HLCs) have been established. These cells are currently used for modeling inherited and acquired diseases, and to test for drug efficacy and toxicity. Unfortunately, HLCs lack maturity and resemble rather fetal than adult hepatocytes. Novel 3D-based models may overcome these drawbacks in the future. In this review, we critically analyse the most common differentiation protocols and their evolution. In addition, we introduce recently developed techniques for 3D differentiation. Finally, we discuss drawbacks, challenges, and advantages of the distinct systems for routine toxicity tests, disease modeling and future cell replacement therapies.


Asunto(s)
Hepatopatías , Células Madre Pluripotentes , Animales , Diferenciación Celular , Células Cultivadas , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Células Madre Pluripotentes/metabolismo
5.
Curr Protoc Stem Cell Biol ; 42: 4A.13.1-4A.13.34, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28806853

RESUMEN

This unit describes protocols to develop hepatocyte-like cells (HLCs) starting from mesenchymal stem cells (MSCs) as a natural host for hepatitis C virus (HCV). These include the preparation of MSCs from bone marrow, the reprogramming of MSCs into induced pluripotent stem cells (iPSCs), and the differentiation of iPSCs into HLCs. This unit also incorporates the characterization of the resulting cells at each stage. Another section entails the preparations of HCV. The sources of HCV are either the clinically isolated HCV (HCVser) and the conventional JFH-1 genotype. The last section is the infection protocol coupled with the measurement of viral titer. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Hepacivirus/crecimiento & desarrollo , Hepatocitos/virología , Células Madre Pluripotentes Inducidas/virología , Células Madre Mesenquimatosas/virología , Cultivo de Virus/métodos , Hepacivirus/aislamiento & purificación , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA