Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nano Lett ; 24(25): 7662-7671, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38870422

RESUMEN

Extensive investigations have proven the effectiveness of elastic binders in settling the challenge of structural damage posed by volume expansion of high-capacity anode used in nanoscale silicon. However, the sluggish ionic conductivity of polymer binder severely restricts the electrode reactions, making it unsuitable for practical applications. Inspired by the biological tissues with rapid neurotransmission and robust muscles, we propose a biomimetic binder that contains ionic conductive polymer (by polymerization reaction of poly(ethylene glycol) diglycidyl ether and polyethylenimine) and rigid polymer backbone (polyacrylic acid), which can effectively mitigate both Li-ion transport resistance and lithiation stress to stabilize the silicon nanoparticles during cycles. Consequently, the silicon anode with biomimetic binder achieves a rate capability of 1897 mAh g-1 at 8.0 A g-1 and capacity retention of 87% after 150 cycles under areal capacity upon 3.0 mAh cm-2. These results demonstrate the possibility of decoupling ionic conductivity from mechanical properties toward practical high-capacity anodes for energy-dense batteries.

2.
Small ; 20(6): e2304723, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37797197

RESUMEN

Aqueous Zn-ion batteries are the ideal candidate for large-scale energy storage systems owing to their high safety and low cost. However, the uncontrolled deposition and parasitic reaction of Zn metal anode hinder their commercial application. Here, the 2D metal-organic-framework (MOF) nanoflakes covered on the surface of Zn are proposed to enable dendrite-free for long lifespan Zn metal batteries. The MOF can facilitate the desolvation process to accelerate reaction kinetic due to its special channel structure. The abundant zincopilicity sites of MOF can realize the homogenous Zn2+ deposition. Consequently, their synergetic effect makes the MOF protected Zn anode good electrochemical performance with a long cycle life of 1400 h at 1 mA cm-2 and a high depth of discharge of 30 mAh cm-2 (DOD ≈ 54%) continued for over 700 h. This work provides a novel strategy for high-performance rechargeable Zn-ion batteries.

3.
Small ; 20(5): e2305964, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759425

RESUMEN

Hosts hold great prospects for addressing the dendrite growth and volume expansion of the Li metal anode, but Li dendrites are still observable under the conditions of high deposition capacity and/or high current density. Herein, a nitrogen-doped graphene mesh (NGM) is developed, which possesses a conductive and lithiophilic scaffold for efficient Li deposition. The abundant nanopores in NGM can not only provide sufficient room for Li deposition, but also speed up Li ion transport to achieve a high-rate capability. Moreover, the evenly distributed N dopants on the NGM can guide the uniform nucleation of Li so that to inhibit dendrite growth. As a result, the composite NGM@Li anode shows satisfactory electrochemical performances for Li-S batteries, including a high capacity of 600 mAh g-1 after 300 cycles at 1 C and a rate capacity of 438 mAh g-1 at 3 C. This work provides a new avenue for the fabrication of graphene-based hosts with large areal capacity and high-rate capability for Li metal batteries.

4.
Small ; 20(31): e2311773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38446094

RESUMEN

Active sites, mass loading, and Li-ion diffusion coefficient are the benchmarks for boosting the areal capacity and storage capability of electrode materials for lithium-ion batteries. However, simultaneously modulating these criteria to achieve high areal capacity in LIBs remains challenging. Herein, MoS2 is considered as a suitable electroactive host material for reversible Li-ion storage and establish an endogenous multi-heterojunction strategy with interfacial Mo-C/N-Mo-S coordination bonding that enables the concurrent regulation of these benchmarks. This strategy involves architecting 3D integrated conductive nanostructured frameworks composed of Mo2C-MoN@MoS2 on carbon cloth (denoted as C/MMMS) and refining the sluggish kinetics in the MoS2-based anodes. Benefiting from the rich hetero-interface active sites, optimized Li adsorption energy, and low diffusion barrier, C/MMMS reaches a mass loading of 12.11 mg cm-2 and showcases high areal capacity and remarkable rate capability of 9.6 mAh cm-2@0.4 mA cm-2 and 2.7 mAh cm-2@6.0 mA cm-2, respectively, alongside excellent stability after 500 electrochemical cycles. Moreover, this work not only affirms the outstanding performance of the optimized C/MMMS as an anode material for supercapacitors, underscoring its bifunctionality but also offers valuable insight into developing endogenous transition metal compound electrodes with high mass loading for the next-generation high areal capacity energy storage devices.

5.
Small ; 20(35): e2402026, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38659177

RESUMEN

Mn2+/MnO2 aqueous battery is a promising candidate for large-scale energy storage owing to its feature of low-cost and abundant crustal reserves. However, the inherent MnO2 shedding issue results in a limited areal capacity and poor cycling life, which prohibits its further commercialization. In this manuscript, it is revealed that the cause of shedding is the cracking of MnO2 layer due to stress. To circumvent this challenge, carbon nanotubes framework is introduced on pristine carbon felt, which provides more deposition sites and induces the formation of a porous deposition layer. Compared to the dense deposition layer on pristine carbon felt, the porous structure can effectively avoid cracking and subsequent shedding issue. Moreover, the porous deposited layer is conducive to proton diffusion and rich in defects, which facilitates the subsequent dissolution reaction. As results, the assembled Zn/Mn battery demonstrates more than 200 cycles with the areal capacity of 15 mAh cm-2 at 40 mA cm-2. Even with a high areal capacity of 40 mAh cm-2, it can still run for more than 60 cycles. This breakthrough paves a way toward practical manganese-based batteries, bringing us closer to achieve cost-effective batteries.

6.
Small ; 20(22): e2307103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213015

RESUMEN

Flexible lithium-ion batteries (FLIBs) are intensively studied using free-standing transition metal oxides (TMOs)-based anode materials. However, achieving high areal capacity TMO-based anode materials is yet to be effectively elucidated owing to the poor adhesion of the active materials to the flexible substrate resulting in low active mass loading, and hence low areal capacity is realized. Herein, a novel monolithic rutile TiO2 microparticles on carbon cloth (ATO/CC) that facilitate the flower-like arrangement of TiO2 nanowires (denoted ATO/CC/OTO) is demonstrated as high areal capacity anode for FLIBs. The optimized ATO/CC/OTO anode exhibits high areal capacity (5.02 mAh cm-2@0.4 mA cm-2) excellent rate capability (1.17 mAh cm-2@5.0 mA cm-2) and remarkable cyclic stability (over 500 cycles). A series of morphological, kinetic, electrochemical, in situ Raman, and theoretical analyses reveal that the rational phase boundaries between the microparticles and nanowires contribute to promoting the Li storage activity. Furthermore, a 16.0 cm2 all-FLIB pouch cell assembled based on the ATO/CC/OTO anode and LiNiCoMnO2 cathode coated on ATO/CC (ATO/CC/LNCM) exhibits impressive flexibility under different folding conditions, creating opportunity for the development of high areal capacity anodes in future flexible energy storage devices.

7.
Angew Chem Int Ed Engl ; 63(19): e202401558, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38489014

RESUMEN

In metal-based flow battery, membranes significantly impact energy conversion efficiency and security. Unfortunately, damages to the membrane occur due to gradual accumulation of metal dendrites, causing short circuits and shortening cycle life. Herein, we developed a rigid hierarchical porous ceramic flow battery composite membrane with a sub-10-nm-thick polyelectrolyte coating to achieve high ion selectivity and conductivity, to restrain dendrite, and to realize long cycle life and high areal capacity. An aqueous zinc-iron flow battery prepared using this membrane achieved an outstanding energy efficiency of >80%, exhibiting excellent long-term stability (over 1000 h) and extremely high areal capacity (260 mAh cm-2). Low-field nuclear magnetic resonance (NMR) spectroscopy, small-angle X-ray scattering, in situ infrared spectroscopy, solid-state NMR analysis, and nano-computed tomography revealed that the rigid hierarchical pore structures and numerous hydrogen bonding networks in the membrane contributed to the stable operation and superior battery performance. This study contributes to the development of next-generation metal-based flow battery membranes for energy and power generation.

8.
Small ; 19(21): e2300089, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843272

RESUMEN

Although lithium-sulfur batteries (LSBs) possess a high theoretical specific capacity and energy density, the inherent problems including sluggish sulfur conversion kinetics and the shuttling of soluble lithium polysulfides (LiPSs) have severely hindered the development of LSBs. Herein, cobalt selenide (CoSe2 ) polyhedrons anchored on few-layer TiSe2 -C nanosheets derived from Ti3 C2 Tx MXenes (CoSe2 @TiSe2 -C) are reported for the first time. The dual-conductive CoSe2 @TiSe2 -C heterostructures can accelerate the conversion reaction from liquid LiPSs to solid Li2 S and promote Li2 S dissociation process through high conductivity and lowered reaction energy barriers for promoting overall sulfur redox kinetics, especially under high sulfur loadings and lean electrolyte. Electrochemical analysis and density functional theory calculation results clearly reveal the catalytic mechanisms of the CoSe2 @TiSe2 -C heterostructures from the electronic structure and atomic level. As a result, the cell with CoSe2 @TiSe2 -C interlayer maintains a superior cycling performance with 842.4 mAh g-1  and a low-capacity decay of 0.031% per cycle over 800 cycles at 1.0 C under a sulfur loading of 2.5 mg cm-2 . More encouragingly, it with a high sulfur loading of ≈7.0 mg cm-2  still harvests a high areal capacity of ≈6.25 mAh cm-2  under lean electrolyte (electrolyte/sulfur, E/S ≈ 4.5 µL mg-1 ) after 50 cycles at 0.05 C.

9.
Small ; 19(37): e2301846, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37150862

RESUMEN

The limited cycle life of Li-air batteries (LABs) with high areal capacity remains the chief challenge that hinders their practical applications. Here, the study proposes a hierarchical porous electrode (HPE) design strategy, in which porous MnO nanoflowers are built into mesopore/macropore electrodes through a combination of chemical dealloying and physical de-templating procedures. The MnO nanoflowers with 10-30 nm pore provides active sites to catalyze the O2 reduction and decomposition of discharged products. The 5-10 µm macroscopic pores in the cathode serve as channels of O2 transportation and facilitate the electrolyte permeation. The proposed HPE exhibits a full discharge capacity of 17.49 mAh cm-2 and stable cycle life >2000 h with a limited capacity of 6 mAh cm-2 . These results suggest that the HPE design strategy for LABs can simultaneously provide large capacity and robust cycle life, which is promising for advanced metal-air batteries.

10.
Nano Lett ; 22(21): 8574-8583, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36279311

RESUMEN

A highly stable interface for aqueous rechargeable Zn batteries is of importance to inhibit the growth of Zn dendrites and suppress the side reactions. In this work, we have developed a stable honeycomb-like ZnO passivation protective layer on the Zn surface, which is in situ generated with the assistance of a nonionic surfactant additive (polyethylene glycol tert-octylphenyl ether, denoted as PEGTE). The ZnO passivation layer can facilitate the uniform distribution of the electric field, guiding the uniform deposition of Zn2+ and inhibit the generation of dendrites. As a result, the symmetric cell using the electrolyte with PEGTE shows an excellent performance at high areal capacity, reflected by stable cycling for over 2400 h at 5 mAh/cm2 and 1300 h at 10 mAh/cm2. The full cell paired with V2O5 demonstrates a long lifespan for more than 600 cycles at a low negative/positive capacity ratio.

11.
Small ; 18(21): e2200266, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35475572

RESUMEN

High interfacial resistance and unstable interphase between cathode active materials (CAMs) and solid-state electrolytes (SSEs) in the composite cathode are two of the main challenges in current all-solid-state batteries (ASSBs). In this work, the all-phosphate-based LiFePO4 (LFP) and Li1.3 Al0.3 Ti1.7 (PO4 )3 (LATP) composite cathode is obtained by a co-firing technique. Benefiting from the densified structure and the formed redox-active Li3- x Fe2- x - y Tix Aly (PO4 )3 (LFTAP) interphase, the mixed ion- and electron-conductive LFP/LATP composite cathode facilitates the stable operation of bulk-type ASSBs in different voltage ranges with almost no capacity degradation upon cycling. Particularly, both the LFTAP interphase and LATP electrolyte can be activated. The cell cycled between 4.1 and 2.2 V achieves a high reversible capacity of 2.8 mAh cm-2 (36 µA cm-2 , 60 °C). Furthermore, it is demonstrated that the asymmetric charge/discharge behaviors of the cells are attributed to the existence of the electrochemically active LFTAP interphase, which results in more sluggish Li+ kinetics and more expansive LFTAP plateaus during discharge compared with that of charge. This work demonstrates a simple but effective strategy to stabilize the CAM/SSE interface in high mass loading ASSBs.

12.
Small ; 18(28): e2202006, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35689303

RESUMEN

Conversion-type cathodes such as metal fluorides, especially FeF2 and FeF3 , are potential candidates to replace intercalation cathodes for the next generation of lithium ion batteries. However, the application of iron fluorides is impeded by their poor electronic conductivity, iron/fluorine dissolution, and unstable cathode electrolyte interfaces (CEIs). A facile route to fabricate a mechanical strong electrode with hierarchical electron pathways for FeF2 nanoparticles is reported here. The FeF2 /Li cell demonstrates remarkable cycle performances with a capacity of 300 mAh g-1 after a record long 4500 cycles at 1C. Meanwhile, a record stable high area capacity of over 6 mAh cm-2 is achieved. Furthermore, ultra-high rate capabilities at 20C and 6C for electrodes with low and high mass loading, respectively, are attained. Advanced electron microscopy reveals the formation of stable CEIs. The results demonstrate that the construction of viable electronic connections and favorable CEIs are the key to boost the electrochemical performances of FeF2 cathode.

13.
Small ; 18(50): e2204683, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36310129

RESUMEN

Commercialization of aqueous batteries is mainly hampered by their low energy density, owing to the low mass loading of active cathode materials. In this work, a MnO2 cathode structure (MnO2 /CTF) is designed to modify the MnO2 /collector interface for enhanced ion transportation properties. Such a cathode can achieve ultrahigh mass loading of MnO2 , large areal capacity, and high energy density, with excellent cycling stability and rate performance. Specifically, a 0.15 mm thick MnO2 /CTF cathode can realize a mass loading of 20 mg cm-2 with almost 100% electrochemical conversion of MnO2 , providing the maximum areal capacity of 12.08 mA h cm-2 and energy density of 191 W h kg-1 for Zn-MnO2 /CTF batteries when considering both cathode and anode. Besides the conventional low energy demonstrations, such a Zn-MnO2 /CTF battery is capable of realistic applications, such as mobile phones in our daily life, which is a promising alternative for wearable electronics.


Asunto(s)
Compuestos de Manganeso , Óxidos , Zinc , Suministros de Energía Eléctrica
14.
Small ; 18(16): e2106898, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35253994

RESUMEN

High-voltage spinel cobalt-free LiNi0.5 Mn1.5 O4 (LNMO) is one of the most promising cathode candidates for next-generation lithium-ion batteries (LIBs) due to its high specific capacity, high operating voltage, and low cost. However, inferior electronic conductivity, transition metal dissolution, and fast capacity degradation of LNMO, especially in high mass loading for high areal capacity, are the critical material challenges for its practical application. Herein, trace multiple Cr-Fe-Cu elements doping of LiNi0.45 Cr0.0167 Fe0.0167 Cu0.0167 Mn1.5 O4 (CFC0.5-LNMO) cathode is achieved by a blow-spinning strategy to exhibit very stable cycling at a practical level of areal capacity up to 3 mAh cm-2 . It is demonstrated that the Cu, Fe, and Cr doping into the LNMO lattice can suspend the Mn dissolution and improve the Li ion diffusivity and electronic conductivity of the LNMO host. As a result, the obtained CFC0.5-LNMO cathode exhibits an excellent rate performance (1.75 mAh cm-2 at 1C) and long cycling stability under an areal capacity of 3 mAh cm-2 (78% capacity retention over 300 cycles at 0.5C).

15.
Small ; 17(26): e2100778, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34060232

RESUMEN

The ever-growing portable electronics and electric vehicle draws the attention of scaling up of energy storage systems with high areal-capacity. The concept of thick electrode designs has been used to improve the active mass loading toward achieving high overall energy density. However, the poor rate capabilities of electrode material owing to increasing electrode thickness significantly affect the rapid transportation of ionic and electron diffusion kinetics. Herein, a new concept named "sub-thick electrodes" is successfully introduced to mitigate the Li-ion storage performance of electrodes. This is achieved by using commercial nickel foam (NF) to develop a monolithic 3D with rich in situ heterogeneous interfaces anode (Cu3 P-Ni2 P-NiO, denoted NF-CNNOP) to reinforce the adhesive force of the active materials on NF as well as contribute additional capacity to the electrode. The as-prepared NF-CNNOP electrode displays high reversible and rate areal capacities of 6.81 and 1.50 mAh cm-2 at 0.40 and 6.0 mA cm-2 , respectively. The enhanced Li-ion storage capability is attributed to the in situ interfacial engineering within the NiO, Ni2 P, and Cu3 P and the 3D consecutive electron conductive network. In addition, cyclic voltammetry, charge-discharge curves, and symmetric cell electrochemical impedance spectroscopy consistently reveal improved pseudocapacitance with enhanced transports kinetics in this sub-thick electrodes.

16.
Nano Lett ; 20(7): 5504-5512, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32551672

RESUMEN

Thick electrode with high-areal-capacity is a practical and promising strategy to increase the energy density of batteries, but development toward thick electrode is limited by the electrochemical performance, mechanical properties, and manufacturing approaches. In this work, we overcome these limitations and report an ultrathick electrode structure, called fiber-aligned thick or FAT electrode, which offers a novel electrode design and a scalable manufacturing strategy for high-areal-capacity battery electrodes. The FAT electrode uses aligned carbon fibers to construct a through-thickness fiber-aligned electrode structure with features of high electrode material loading, low tortuosity, high electrical and thermal conductivity, and good compression property. The low tortuosity of FAT electrode enables fast electrolyte infusion and rapid electron/ion transport, exhibiting a higher capacity retention and lower charge transfer resistance than conventional slurry-casted thick electrode design.

17.
Angew Chem Int Ed Engl ; 60(20): 11359-11369, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33751750

RESUMEN

Commercialization of the lithium-sulfur battery is hampered by bottlenecks like low sulfur loading, high cathode porosity, uncontrollable Li2 Sx deposition and sluggish kinetics of Li2 S activation. Herein, we developed a densely stacked redox-active hexaazatrinaphthylene (HATN) polymer with a surface area of 302 m2 g-1 and a very high bulk density of ca. 1.60 g cm-3 . Uniquely, HATN polymer has a similar redox potential window to S, which facilitates the binding of Li2 Sx and its transformation chemistry within the bulky polymer host, leading to fast Li2 S/S kinetics. The compact polymer/S electrode presents a high sulfur loading of ca. 15 mgs cm-2 (200-µm thickness) with a low cathode porosity of 41 %. It delivers a high areal capacity of ca. 14 mAh cm-2 and good cycling stability (200 cycles) at electrolyte-sulfur (E/S) ratio of 5 µL mgs -1 . The assembled pouch cell delivers a cell-level high energy density of 303 Wh kg-1 and 392 Wh L-1 .

18.
Small ; 16(37): e2001784, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32797714

RESUMEN

Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant-nest-like network and a dense substrate is reported for an ultrastable Li metal anode. The duplex Cu is fabricated by sulfurization of thick Cu foil with a subsequent skeleton self-welding procedure. Uniform Li deposition is achieved by the 3D interconnected architecture and lithiophilic surface of self-welded Cu skeleton. The sufficient space in the porous layer enables a large areal capacity for Li and significantly improves the electrode-electrolyte interface. Simulations reveal that the structure allows proper electric field penetration into the connected tunnels. The assembled Li anodes exhibit high coulombic efficiency (97.3% over 300 cycles) and long lifespan (>880 h) at a current density of 1 mA cm-2 with a capacity of 1 mAh cm-2 . Stable and deep cycling can be maintained up to 50 times at a high capacity of 10 mAh cm-2 .

19.
Small ; 16(47): e2002200, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33140911

RESUMEN

Embedding the functional nanostructures into a lightweight nanocarbon framework is very promising for developing high performance advanced electrodes for rechargeable batteries. Here, to realize workable capacity, core-shell (FeSe2 /C) nanostructures are embedded into carbon nanotube (CNT) framework via a facile wet-chemistry approach accompanied by thermally induced selenization. The CNT framework offers 3D continuous routes for electronic/ionic transfer, while macropores provide adequate space for high mass loading of FeSe2 /C. However, the carbon shell not only creates a solid electronic link among CNTs and FeSe2 but also improves the diffusivity of sodium ions into FeSe2 , as well as acts as a buffer cushion to accommodate the volume variations. These unique structural features of CNT/FeSe2 /C make it an excellent host for sodium storage with a capacity retention of 546 mAh g-1 even after 100 cycles at 100 mA g-1 . Moreover, areal and volumetric capacities of 5.06 mAh cm-2 and 158 mAh cm-3 are also achieved at high mass loading 16.9 mg cm-2 , respectively. The high performance of multi-benefited engineered structure makes it a potential candidate for secondary ion batteries, while its easy synthesis makes it extendable to further complex structures with other morphologies (such as nanorods, nanowires, etc.) to meet the high energy demands.

20.
Small ; 15(2): e1803572, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30548088

RESUMEN

High-capacity anodes of lithium-ion batteries generally suffer from poor electrical conductivity, large volume variation, and low tap density caused by prepared nanostructures, which make it an obstacle to achieve both high-areal capacity and stable cycling performance for practical applications. Herein, micrometer-sized porous Fe2 N/C bulk is prepared to tackle the aforementioned issues, and thus realize both high-areal capacity and stable cycling performance at high mass loading. The porous structure in Fe2 N/C bulk is beneficial to alleviate the volumetric change. In addition, the N-doped carbon conducting networks with high electrical conductivity provide a fast charge transfer pathway. Meanwhile, the micrometer-sized Fe2 N/C bulk exhibits a higher tap density than that of commercial graphite powder (1.03 g cm-3 ), which facilitates the preparation of thinner electrode at high mass loadings. As a result, a high-areal capacity of above 4.2 mA h cm-2 at 0.45 mA cm-2 is obtained at a high mass loading of 7.0 mg cm-2 for LIBs, which still maintains at 2.59 mA h cm-2 after 200 cycles with a capacity retention of 98.8% at 0.89 mA cm-2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA