Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38888612

RESUMEN

PURPOSE: Hepatic fibrosis develops as a response to chronic liver injury, resulting in the formation of fibrous scars. This process is initiated and driven by collagen-producing activated myofibroblasts which reportedly express high levels of platelet derived growth factor receptor-ß (PDGFRß). We therefore regard PDGFRß as an anchor for diagnosis and therapy. The Fibrobody® SP02SP26-ABD is a biparatopic VHH-construct targeting PDGFRß. Here, we explore its potential as a theranostic vector for liver fibrosis. METHODS: Specificity, cross-species binding, and cellular uptake of SP02SP26-ABD was assessed using human, mouse and rat PDGFRß ectodomains and PDGFRß-expressing cells. Cellular uptake by PDGFRß-expressing cells was also evaluated by equipping the Fibrobody® with auristatinF and reading out in vitro cytotoxicity. The validity of PDGFRß as a marker for active fibrosis was confirmed in human liver samples and 3 mouse models of liver fibrosis (DDC, CCl4, CDA-HFD) through immunohistochemistry and RT-PCR. After radiolabeling of DFO*-SP02SP26-ABD with 89Zr, its in vivo targeting ability was assessed in healthy mice and mice with liver fibrosis by PET-CT imaging, ex vivo biodistribution and autoradiography. RESULTS: SP02SP26-ABD shows similar nanomolar affinity for human, mouse and rat PDGFRß. Cellular uptake and hence subnanomolar cytotoxic potency of auristatinF-conjugated SP02SP26-ABD was observed in PDGFRß-expressing cell lines. Immunohistochemistry of mouse and human fibrotic livers confirmed co-localization of PDGFRß with markers of active fibrosis. In all three liver fibrosis models, PET-CT imaging and biodistribution analysis of [89Zr]Zr-SP02SP26-ABD revealed increased PDGFRß-specific uptake in fibrotic livers. In the DDC model, liver uptake was 12.15 ± 0.45, 15.07 ± 0.90, 20.23 ± 1.34, and 20.93 ± 4.35%ID/g after 1,2,3 and 4 weeks of fibrogenesis, respectively, compared to 7.56 ± 0.85%ID/g in healthy mice. Autoradiography revealed preferential uptake in the fibrotic (PDGFRß-expressing) periportal areas. CONCLUSION: The anti-PDGFRß Fibrobody® SP02SP26-ABD shows selective and high-degree targeting of activated myofibroblasts in liver fibrosis, and qualifies as a vector for diagnostic and therapeutic purposes.

2.
Mol Pharm ; 21(1): 255-266, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38093483

RESUMEN

Immune checkpoint inhibitors (ICIs) therapy based on programmed cell death ligand 1 (PD-L1) has shown significant development in treating several carcinomas, but not all patients respond to this therapy due to the heterogeneity of PD-L1 expression. The sensitive and accurate quantitative analysis of in vivo PD-L1 expression is critical for treatment decisions and monitoring therapy. In the present study, an aptamer-based dual-modality positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging probe was developed, and its specificity and sensitivity to PD-L1 were assessed in vitro and in vivo. The probe precursor NOTA-Cy5-R1 was prepared by using automated solid-phase oligonucleotide synthesis. PET/NIRF dual-modality probe [68Ga]Ga-NOTA-Cy5-R1 was successfully synthesized and radiolabeled. The binding specificity of [68Ga]Ga-NOTA-Cy5-R1 to PD-L1 was evaluated by flow cytometry, fluorescence imaging, and cellular uptake in A375-hPD-L1 and A375 cells, and it showed good fluorescence properties and stability in vitro. In vivo PET/NIRF imaging studies illustrated that [68Ga]Ga-NOTA-Cy5-R1 can sensitively and specifically bind to PD-L1 positive tumors. Meanwhile, the rapid clearance of probes from nontarget tissues achieved a high signal-to-noise ratio. In addition, changes of PD-L1 expression in NCI-H1299 xenografts treated with cisplatin (CDDP) were sensitivity monitored by [68Ga]Ga-NOTA-Cy5-R1 PET imaging, and ex vivo autoradiography and western blot analyses correlated well with the change of PD-L1 expression in vivo. Overall, [68Ga]Ga-NOTA-Cy5-R1 showed notable potency as a dual-modality PET/NIRF imaging probe for visualizing tumors and monitoring the dynamic changes of PD-L1 expression, which can help to direct and promote the clinical practice of ICIs therapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones/métodos , Anticuerpos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
3.
Mol Pharm ; 21(3): 1353-1363, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38282332

RESUMEN

Very late antigen-4 (VLA4; CD49d) is a promising immune therapy target in treatment-resistant leukemia and multiple myeloma, and there is growing interest in repurposing the humanized monoclonal antibody (Ab), natalizumab, for this purpose. Positron emission tomography with radiolabeled Abs (immuno-PET) could facilitate this effort by providing information on natalizumab's in vivo pharmacokinetic and target delivery properties. In this study, we labeled natalizumab with 89Zr specifically on sulfhydryl moieties via maleimide-deferoxamine conjugation. High VLA4-expressing MOLT4 human T cell acute lymphoblastic leukemia cells showed specific 89Zr-natalizumab binding that was markedly blocked by excess Ab. In nude mice bearing MOLT4 tumors, 89Zr-natalizumab PET showed high-contrast tumor uptake at 7 days postinjection. Biodistribution studies confirmed that uptake was the highest in MOLT4 tumors (2.22 ± 0.41%ID/g) and the liver (2.33 ± 0.76%ID/g), followed by the spleen (1.51 ± 0.42%ID/g), while blood activity was lower at 1.12 ± 0.21%ID/g. VLA4-specific targeting in vivo was confirmed by a 58.1% suppression of tumor uptake (0.93 ± 0.15%ID/g) when excess Ab was injected 1 h earlier. In cultured MOLT4 cells, short-term 3 day exposure to the proteasome inhibitor bortezomib (BTZ) did not affect the α4 integrin level, but BTZ-resistant cells that survived the treatment showed increased α4 integrin expression. When the effects of BTZ treatment were tested in mice, there was no change of the α4 integrin level or 89Zr-natalizumab uptake in MOLT4 leukemia tumors, which underscores the complexity of tumor VLA4 regulation in vivo. In conclusion, 89Zr-natalizumab PET may be useful for noninvasive monitoring of tumor VLA4 and may assist in a more rational application of Ab-based therapies for hematologic malignancies.


Asunto(s)
Integrina alfa4beta1 , Leucemia , Humanos , Animales , Ratones , Natalizumab/uso terapéutico , Cisteína , Integrina alfa4 , Ratones Desnudos , Distribución Tisular , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Circonio/química
4.
J Labelled Comp Radiopharm ; 67(8): 280-287, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38744538

RESUMEN

A key aspect for the applicability of 89Zr-radioimmunoconjugates is inert modification and radiolabeling. The two commercially available bifunctional variants of the siderophore desferrioxamine (DFO), Fe-DFO-N-suc-TFP-ester and p-NCS-Bz-DFO, are most often used for clinical 89Zr-immuno-PET. The use of Fe-DFO-N-suc-TFP-ester is advantageous with regard to higher radiolysis stability and more facile assessment of radiochemical purity as well as chelator-to-mAb ratio. However, not all mAbs withstand the Fe-removal step at relatively low pH (4-4.5) using EDTA, which is needed after conjugation to allow 89Zr labeling. In this study, it was investigated whether hydroxybenzyl ethylenediamine (HBED) or the clinically approved deferiprone (DFP) can serve as an alternative for EDTA to establish a pH-independent mild method for Fe-removal and thereby broaden the applicability of Fe-DFO-N-suc-TFP-ester. Carrier-added [59Fe]Fe-DFO-N-suc-TFP-ester was used for mAb modification to enable direct tracking of the Fe-removal efficiency under various conditions. Whereas incomplete Fe-removal with HBED was observed at pH 5 or higher, Fe-removal with DFP was possible at a broad pH range (4-9). This provides a mild, pH-independent method for Fe-removal, improving the applicability and attractiveness of Fe-DFO-N-suc-TFP-ester for 89Zr-mAb preparation.


Asunto(s)
Deferoxamina , Hierro , Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Circonio/química , Deferoxamina/química , Radioisótopos/química , Hierro/química , Tomografía de Emisión de Positrones/métodos , Piridonas/química , Deferiprona/química , Inmunoconjugados/química , Radiofármacos/química , Anticuerpos Monoclonales/química
5.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271158

RESUMEN

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Asunto(s)
Neoplasias , Tomografía de Emisión de Positrones , Adulto , Humanos , Ratones , Ratas , Animales , Tomografía de Emisión de Positrones/métodos , Indicadores y Reactivos/uso terapéutico , Distribución Tisular , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Circonio/química , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral
6.
Eur J Nucl Med Mol Imaging ; 50(5): 1306-1317, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635462

RESUMEN

PURPOSE: The recent conditional FDA approval of Aducanumab (Adu) for treating Alzheimer's disease (AD) and the continued discussions around that decision have increased interest in immunotherapy for AD and other brain diseases. Reliable techniques for brain imaging of antibodies may guide decision-making in the future but needs further development. In this study, we used 89Zr-immuno-PET to evaluate the targeting and distribution of a bispecific brain-shuttle IgG based on Adu with transferrin receptor protein-1 (TfR1) shuttling mechanism, mAbAdu-scFab8D3, designated Adu-8D3, as a candidate theranostic for AD. We also validated the 89Zr-immuno-PET platform as an enabling technology for developing new antibody-based theranostics for brain disorders. METHODS: Adu, Adu-8D3, and the non-binding control construct B12-8D3 were modified with DFO*-NCS and radiolabeled with 89Zr. APP/PS1 mice were injected with 89Zr-labeled mAbs and imaged on days 3 and 7 by positron emission tomography (PET). Ex vivo biodistribution was performed on day 7, and ex vivo autoradiography and immunofluorescence staining were done on brain tissue to validate the PET imaging results and target engagement with amyloid-ß plaques. Additionally, [89Zr]Zr-DFO*-Adu-8D3 was evaluated in 3, 7, and 10-month-old APP/PS1 mice to test its potential in early stage disease. RESULTS: A 7-fold higher brain uptake was observed for [89Zr]Zr-DFO*-Adu-8D3 compared to [89Zr]Zr-DFO*-Adu and a 2.7-fold higher uptake compared to [89Zr]Zr-DFO*-B12-8D3 on day 7. Autoradiography and immunofluorescence of [89Zr]Zr-DFO*-Adu-8D3 showed co-localization with amyloid plaques, which was not the case with the Adu and B12-8D3 conjugates. [89Zr]Zr-DFO*-Adu-8D3 was able to detect low plaque load in 3-month-old APP/PS1 mice. CONCLUSION: 89Zr-DFO*-immuno-PET revealed high and specific uptake of the bispecific Adu-8D3 in the brain and can be used for the early detection of Aß plaque pathology. Here, we demonstrate that 89Zr-DFO*-immuno-PET can be used to visualize and quantify brain uptake of mAbs and contribute to the evaluation of biological therapeutics for brain diseases.


Asunto(s)
Enfermedad de Alzheimer , Radioisótopos , Ratones , Animales , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Anticuerpos Monoclonales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Amiloide , Circonio , Línea Celular Tumoral
7.
Eur J Nucl Med Mol Imaging ; 50(7): 1897-1905, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36820891

RESUMEN

PURPOSE: Positron emission tomography imaging of zirconium-89-labelled monoclonal antibodies (89Zr-Immuno-PET) allows for visualisation and quantification of antibody uptake in tumours in vivo. Patlak linearization provides distribution volume (VT) and nett influx rate (Ki) values, representing reversible and irreversible uptake, respectively. Standardised uptake value (SUV) and tumour-to-plasma/tumour-to-blood ratio (TPR/TBR) are often used, but their validity depends on the comparability of plasma kinetics and clearances. This study assesses the validity of SUV, TPR and TBR against Patlak Ki for quantifying irreversible 89Zr-Immuno-PET uptake in tumours. METHODS: Ten patients received 37 MBq 10 mg 89Zr-anti-EGFR with 500 mg/m2 unlabelled mAbs. Five patients received two doses of 37 MBq 89Zr-anti-HER3: 8-24 mg for the first administration and 24 mg-30 mg/kg for the second. Seven tumours from four patients showed 89Zr-anti-EGFR uptake, and 18 tumours from five patients showed 89Zr-anti-HER3 uptake. SUVpeak, TPRpeak and TBRpeak values were obtained from one to six days p.i. Patlak linearization was applied to tumour time activity curves and plasma samples to obtain Ki. RESULTS: For 89Zr-anti-EGFR, there was a small variability along the linear regression line between SUV (- 0.51-0.57), TPR (- 0.06‒0.11) and TBR (- 0.13‒0.16) on day 6 versus Ki. Similar doses of 89Zr-anti-HER3 showed similar variability for SUV (- 1.3‒1.0), TPR (- 1.1‒0.53) and TBR (- 1.5‒0.72) on day 5 versus Ki. However, for the second administration of 89Zr-anti-HER3 with a large variability in administered mass doses, SUV showed a larger variability (- 1.4‒2.3) along the regression line with Ki, which improved when using TPR (- 0.38-0.32) or TBR (- 0.56‒0.46). CONCLUSION: SUV, TPR and TBR at late time points were valid for quantifying irreversible lesional 89Zr-Immuno-PET uptake when constant mass doses were administered. However, for variable mass doses, only TPR and TBR provided reliable values for irreversible uptake, but not SUV, because SUV does not take patient and mass dose-specific plasma clearance into account.


Asunto(s)
Neoplasias , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Anticuerpos Monoclonales , Cinética , Circonio
8.
Eur J Nucl Med Mol Imaging ; 50(7): 1929-1939, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36826476

RESUMEN

INTRODUCTION: Immune-mediated interstitial pneumonitis may be treated with anti-CD20 therapy after failure of conventional therapies. However, clinical response is variable. It was hypothesized that autoreactive CD20-positive cells may play an important role in this variability. This prospective study aims to elucidate if imaging of CD20-positive cells in the lungs allows prediction of the response to anti-CD20 treatment. METHODS: Twenty-one patients with immune-mediated interstitial lung disease (ILD) with deteriorated pulmonary function received a dose of 1000 mg rituximab on day 1 and day 14 spiked with a tracer dose of radiolabeled [89Zr]-rituximab. PET/CT was performed on days 3 and 6. Standardized uptake values (SUV) were calculated as a measure for pulmonary CD20 expression. Based on pulmonary function tests (PFT), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO), prior to and 6 months after treatment, patients were classified as responder (stable disease or improvement) or non-responder. RESULTS: Fifteen patients (71%) were classified as responder. Pulmonary [89Zr]-rituximab PET SUVmean was significantly correlated with the change in FVC and DLCO (K = 0.49 and 0.56, respectively) when using target-to-background ratios, but not when using SUVmean alone. [89Zr]-rituximab SUVmean was significantly higher in responders than in non-responders (0.35 SD 0.09 vs. 0.23 SD 0.06; P = 0.02). CONCLUSION: Rituximab treatment was effective in the majority of patients. As a higher pulmonary uptake of [89Zr]-rituximab correlated with improvement of PFT and treatment outcome, [89Zr]-rituximab PET imaging may serve as a potential predictive biomarker for anti-CD20 therapy. TRIAL REGISTRATION: Clinicaltrials.gov identifier NCT02251964.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Radioisótopos , Humanos , Rituximab/efectos adversos , Radioisótopos/uso terapéutico , Circonio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Prospectivos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Pulmón , Tomografía de Emisión de Positrones
9.
Eur J Nucl Med Mol Imaging ; 50(1): 14-26, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36028577

RESUMEN

PURPOSE: Previous SPECT and PET semi-quantitative in vivo imaging studies in monkeys have demonstrated specific uptake of radiolabeled rhesus recombinant anti-CD4 monoclonal antibody fragment CD4R1-F(ab΄)2 in the spleen and clusters of lymph nodes (LNs) but yielded conflicting results of imaging the gut CD4 + T-cell pool. Here, using PET dynamic imaging with kinetic analysis, we performed a fully quantitative CD4 imaging in rhesus macaques. METHODS: The biodistributions of [89Zr]Zr-CD4R1-F(ab΄)2 and/or of [89Zr]Zr-ibalizumab were performed with static PET scans up to 144 h (6 days) post-injection in 18 rhesus macaques with peripheral blood CD4 + T cells/µl ranging from ~ 20 to 2400. Fully quantitative analysis with a 4-h dynamic scan, arterial sampling, metabolite evaluation, and model fitting was performed in three immunocompetent monkeys to estimate the binding potential of CD4 receptors in the LNs, spleen, and gut. RESULTS: The biodistributions of [89Zr]Zr-CD4R1-F(ab΄)2 and [89Zr]Zr-ibalizumab were similar in lymphoid tissues with a clear delineation of the CD4 pool in the LNs and spleen and a significant difference in lymphoid tissue uptake between immunocompetent and immunocompromised macaques. Consistent with our previous SPECT imaging of [99mTc]Tc-CD4R1-F(ab΄)2, the [89Zr]Zr-CD4R1-F(ab΄)2 and [89Zr]Zr-Ibalizumab uptakes in the gut were low and not different between uninfected and SIV-infected CD4-depleted monkeys. Ex vivo studies of large and small intestines confirmed the in vivo images. CONCLUSION: The majority of specific binding to CD4 + tissue was localized to LNs and spleen with minimal uptake in the gut. Binding potential derived from fully quantitative studies revealed that the contribution of the gut is lower than the spleen's contribution to the total body CD4 pool.


Asunto(s)
Tomografía de Emisión de Positrones , Circonio , Animales , Macaca mulatta , Cinética , Tomografía de Emisión de Positrones/métodos
10.
Mol Pharm ; 19(10): 3484-3491, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36046954

RESUMEN

Monoclonal antibodies (Ab) have revolutionized the management of lymphomas, the most common hematologic malignancy in adults. Indeed, incorporation of rituximab into the regimen for indolent non-Hodgkin's lymphomas (NHLs) has dramatically improved treatment response and disease outcome. Yet, newer Ab therapeutics against promising antigen targets need to be developed to treat refractory or relapsed patients. Treatment efficacy can be further enhanced by conjugating toxic molecules to the Abs. Radioimmunotherapy (RIT) harnesses Abs as vehicles for targeted delivery of therapeutic radionuclide payloads for direct killing of targeted tumor cells. Positron emission tomography (PET) with radiolabeled Abs (called immuno-PET) can facilitate the development of new Ab therapeutics and RIT by providing pharmacokinetic and pharmacodynamic information and by quantifying tumor antigen level relevant for treatment decision. Immuno-PET has recently gravitated toward labeling Abs with 89Zr, a radiometal with a 3.3 day half-life that is trapped following Ab internalization and thus provides high-resolution PET images with excellent contrast. Immuno-PET methods against major lymphoma antigens including CD20 and other promising targets are currently under development. With continued improvements, immuno-PET has the potential to be used in lymphoma management as an imaging biomarker for patient selection and assessment of treatment response.


Asunto(s)
Linfoma , Radioinmunoterapia , Adulto , Anticuerpos Monoclonales , Antígenos de Neoplasias , Humanos , Linfoma/diagnóstico por imagen , Linfoma/tratamiento farmacológico , Linfoma/radioterapia , Tomografía de Emisión de Positrones , Radioinmunoterapia/métodos , Radioisótopos/uso terapéutico , Rituximab
11.
Mol Pharm ; 19(7): 2629-2637, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35704773

RESUMEN

Activated T cells played critical roles in immunotherapy and adoptive T cell therapy, and a non-invasive imaging strategy can provide us useful information concerning the transportation, accumulation, and homing of T cells in vivo. In this paper, by utilizing the long half-life radionuclide iodine-124 (124I) and CD25 specific monoclonal antibody Basiliximab, we have fabricated a novel probe, namely, 124I-Basiliximab, which was highly promising in the immuno-PET imaging of T cells. In vitro, 124I-Basiliximab had superior affinity to CD25 protein (Kd = 5.31 nM) and exhibited much higher accumulation in CD25 high-expression lymphoma cell line Karpas299 than that in CD25-negative cell line Daudi. In vivo, 124I-Basiliximab was excreted slowly from the body of mice, rendering it a relatively high effective dose (0.393 mSv/MBq) when applied in the immuno-PET imaging. In Karpas299 tumor xenograft, 124I-Basiliximab probe was observed to accumulate in the tumor quickly after tracer administration, with the optimal image acquired at 24 h post-injection. More importantly, PHA-activated hPBMC had much higher uptake of 124I-Basiliximab, indicating the potential utility of 124I-Basiliximab to discriminate activated hPBMC from its non-activated status. In summary, 124I-Basiliximab was fabricated for the first time, which can be applied in CD25-targeted immuno-PET imaging of activated T cells in vivo.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Basiliximab , Humanos , Radioisótopos de Yodo , Ratones , Tomografía de Emisión de Positrones , Proteínas Recombinantes de Fusión
12.
Mol Pharm ; 19(10): 3530-3541, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344359

RESUMEN

Claudin 18.2 (CLDN18.2) is a new potential target for cancer therapy, especially for advanced gastric cancer (AGC). A molecular targeting probe is of importance for patient stratification and therapeutic guidance. Here, we explored an antibody-dependent molecular imaging strategy for specific detection and surgery guidance based on a CLDN18.2-specific antibody, 5C9. Two imaging probes, 124I-5C9 and Cy5.5-5C9, were synthesized. The specificity to CLDN18.2 being evidenced in the cellular experiments with control, the diagnostic utility was assessed by immunopositron emission tomography (immuno-PET) and fluorescence imaging using xenograft models. A near-infrared fluorescent II imaging probe FD1080-5C9 was designed to facilitate the comprehensive surgical removal of lesions. 124I-5C9 immuno-PET imaging clearly delineated subcutaneous CLDN18.2-positive tumors, with a peak uptake (maximum standardized uptake value; SUVmax) of 2.25 ± 0.30, whereas the highest values for the 124I-IgG and blocking groups were 0.70 ± 0.13 and 0.66 ± 0.12, respectively. Cy5.5-5C9 fluorescence imaging showed similar results. As proof of the diagnosis and guided surgery (DGS) concept, 124I-5C9 and FD1080-5C9 were simultaneously administered in orthotopic CLDN18.2-positive tumor models, facilitating the comprehensive resection of tumor tissue. Combined, 124I-5C9 and FD1080-5C9 are both promising DGS tools: the former reveals CLDN18.2 in lesions as a PET probe, and the latter can guide surgery. These results provide a utility molecular imaging strategy for specific detection and surgery guidance based on a CLDN18.2-specific antibody both in AGC and other cancers.


Asunto(s)
Neoplasias Gástricas , Carbocianinas , Moléculas de Adhesión Celular , Línea Celular Tumoral , Claudinas , Humanos , Inmunoglobulina G , Radioisótopos de Yodo , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/cirugía
13.
BMC Cardiovasc Disord ; 22(1): 49, 2022 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35152886

RESUMEN

BACKGROUND: In a Phase I study treatment with the serum amyloid P component (SAP) depleter miridesap followed by monoclonal antibody to SAP (dezamizumab) showed removal of amyloid from liver, spleen and kidney in patients with systemic amyloidosis. We report results from a Phase 2 study and concurrent immuno-positron emission tomography (PET) study assessing efficacy, pharmacodynamics, pharmacokinetics, safety and cardiac uptake (of dezamizumab) following the same intervention in patients with cardiac amyloidosis. METHODS: Both were uncontrolled open-label studies. After SAP depletion with miridesap, patients received ≤ 6 monthly doses of dezamizumab in the Phase 2 trial (n = 7), ≤ 2 doses of non-radiolabelled dezamizumab plus [89Zr]Zr-dezamizumab (total mass dose of 80 mg at session 1 and 500 mg at session 2) in the immuno-PET study (n = 2). Primary endpoints of the Phase 2 study were changed from baseline to follow-up (at 8 weeks) in left ventricular mass (LVM) by cardiac magnetic resonance imaging and safety. Primary endpoint of the immuno-PET study was [89Zr]Zr-dezamizumab cardiac uptake assessed via PET. RESULTS: Dezamizumab produced no appreciable or consistent reduction in LVM nor improvement in cardiac function in the Phase 2 study. In the immuno-PET study, measurable cardiac uptake of [89Zr]Zr-dezamizumab, although seen in both patients, was moderate to low. Uptake was notably lower in the patient with higher LVM. Treatment-associated rash with cutaneous small-vessel vasculitis was observed in both studies. Abdominal large-vessel vasculitis after initial dezamizumab dosing (300 mg) occurred in the first patient with immunoglobulin light chain amyloidosis enrolled in the Phase 2 study. Symptom resolution was nearly complete within 24 h of intravenous methylprednisolone and dezamizumab discontinuation; abdominal computed tomography imaging showed vasculitis resolution by 8 weeks. CONCLUSIONS: Unlike previous observations of visceral amyloid reduction, there was no appreciable evidence of amyloid removal in patients with cardiac amyloidosis in this Phase 2 trial, potentially related to limited cardiac uptake of dezamizumab as demonstrated in the immuno-PET study. The benefit-risk assessment for dezamizumab in cardiac amyloidosis was considered unfavourable after the incidence of large-vessel vasculitis and development for this indication was terminated. Trial registration NCT03044353 (2 February 2017) and NCT03417830 (25 January 2018).


Asunto(s)
Amiloidosis , Anticuerpos Monoclonales , Ácidos Carboxílicos , Cardiomiopatías , Tomografía de Emisión de Positrones , Pirrolidinas , Componente Amiloide P Sérico , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Amiloidosis/sangre , Amiloidosis/diagnóstico por imagen , Amiloidosis/tratamiento farmacológico , Amiloidosis/inmunología , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/uso terapéutico , Ácidos Carboxílicos/efectos adversos , Ácidos Carboxílicos/uso terapéutico , Cardiomiopatías/sangre , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/inmunología , Quimioterapia Combinada , Imagen por Resonancia Magnética , Miocardio/metabolismo , Miocardio/patología , Valor Predictivo de las Pruebas , Pirrolidinas/efectos adversos , Pirrolidinas/uso terapéutico , Componente Amiloide P Sérico/antagonistas & inhibidores , Componente Amiloide P Sérico/inmunología , Factores de Tiempo , Resultado del Tratamiento , Reino Unido , Estados Unidos , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
14.
Eur J Nucl Med Mol Imaging ; 48(3): 694-707, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32889615

RESUMEN

PURPOSE: Almost all radiolabellings of antibodies with 89Zr currently employ the hexadentate chelator desferrioxamine (DFO). However, DFO can lead to unwanted uptake of 89Zr in bones due to instability of the resulting metal complex. DFO*-NCS and the squaramide ester of DFO, DFOSq, are novel analogues that gave more stable 89Zr complexes than DFO in pilot experiments. Here, we directly compare these linker-chelator systems to identify optimal immuno-PET reagents. METHODS: Cetuximab, trastuzumab and B12 (non-binding control antibody) were labelled with 89Zr via DFO*-NCS, DFOSq, DFO-NCS or DFO*Sq. Stability in vitro was compared at 37 °C in serum (7 days), in formulation solution (24 h ± chelator challenges) and in vivo with N87 and A431 tumour-bearing mice. Finally, to demonstrate the practical benefit of more stable complexation for the accurate detection of bone metastases, [89Zr]Zr-DFO*-NCS and [89Zr]Zr-DFO-NCS-labelled trastuzumab and B12 were evaluated in a bone metastasis mouse model where BT-474 breast cancer cells were injected intratibially. RESULTS: [89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts under all conditions. While tumour uptake was similar for all conjugates, bone uptake was lower for DFO* conjugates. Lower bone uptake for DFO* conjugates was confirmed using a second xenograft model: A431 combined with cetuximab. Finally, in the intratibial BT-474 bone metastasis model, the DFO* conjugates provided superior detection of tumour-specific signal over the DFO conjugates. CONCLUSION: DFO*-mAb conjugates provide lower bone uptake than their DFO analogues; thus, DFO* is a superior candidate for preclinical and clinical 89Zr-immuno-PET.


Asunto(s)
Quelantes , Radioisótopos , Animales , Línea Celular Tumoral , Deferoxamina , Ratones , Tomografía de Emisión de Positrones , Distribución Tisular , Circonio
15.
J Labelled Comp Radiopharm ; 64(1): 47-56, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067822

RESUMEN

The next-generation positron zirconium-89 (89 Zr, T1/2 = 3.27 days) is a novel nuclide for immunological positron emission tomography because of its favorite longer half-life. The aim of this work is to develop optimized methods for routine production and purification of 89 Zr through Monte Carlo (MC) simulation and laboratory experiments. 89 Y(p,n)89 Zr reaction was used for 89 Zr production. Optimized thicknesses of Al degrader (0.11 cm) and 89 Y foil (0.064 cm) were simulated through MC method. 89 Zr (15.0-40.7 mCi) with an average production rate of 0.92 ± 0.12 mCi/µA·h was produced after 1- to 2-h bombardment at the proton beam energy of 20 MeV and current of 20 µA. High radio-purity 89 Zr (6.14-26.8 mCi) obtained eluted from hydroxamate resin using 1-mol/L oxalic acid solution, with the concentration of 2.7 × 104 mCi/L. The gamma spectrum showed that the characteristic peak of 89 Zr was 511 and 909 keV, and no impurities were found. [89 Zr]Zr-DFO-trastuzumab was successfully labeled and performed good radiochemical purity (>95%) and stability that showed potential application in tumor molecular imaging.


Asunto(s)
Método de Montecarlo , Radioisótopos , Circonio , Electrones
16.
Eur J Nucl Med Mol Imaging ; 47(5): 1314-1325, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31471714

RESUMEN

PURPOSE: Hematopoietic stem cell transplantation is the only curative treatment for several hematological malignancies and immune deficiency syndromes. Nevertheless, the development of graft-versus-host disease (GvHD) after transplantation is a severe complication with high morbidity and mortality. The aim of this study was to image human T cells during GvHD development and their migration into GvHD-related organs. By using a radiolabeled anti-human CD3 monoclonal antibody (mAb), we were able to visualize GvHD progression in a humanized mouse model. METHODS: Human peripheral blood mononuclear cells (PBMC) were transferred into immunodeficient mice (initially n = 11 mice/group) to induce GvHD. One group additionally received regulatory T cells (Treg) for prevention of GvHD. T cell migration was visualized by sequential small animal PET/MRI using 89Zr-labeled anti-human CD3 mAb. Flow cytometry and immunohistochemistry were used to measure T cell frequencies in relevant organs at different time points after engraftment. RESULTS: Using radiolabeled anti-CD3 mAb, we successfully visualized human T cells in inflamed organs of mice by 89Zr-anti-CD3-PET/MRI. Upon GvHD progression, we observed increased numbers of CD3+ T cells in the liver (22.9% on day 3; 94.2% on day 10) and the spleen (4.4% on day 3; 58.8% on day 10) which correlated with clinical symptoms. The liver showed distinct spot-like lesions representing a strong focal accumulation of T cells. Administration of Treg prior GvHD induction reduced T cell accumulation in the liver from 857 ± 177 CD3+ cells/mm2 to 261 ± 82 CD3+ cells/mm2 and thus prevented GvHD. CONCLUSION: 89Zr-labeled anti-human CD3 mAb can be used as a proof of concept to detect the exact spatio-temporal distribution of GvHD-mediating T cells. In the future, radiolabeled T cell-specific mAb could be employed as a predictive early biomarker during the course of GvHD maybe even before clinical signs of the disease become evident. Furthermore, monitoring T cell migration and proliferation might improve tailored GvHD therapy.


Asunto(s)
Enfermedad Injerto contra Huésped , Animales , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Inflamación , Cinética , Leucocitos Mononucleares , Ratones , Ratones SCID , Tomografía de Emisión de Positrones , Linfocitos T
17.
Mol Imaging ; 18: 1536012119829986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044647

RESUMEN

OBJECTIVE: The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation. METHODS: [89Zr]Zr-DFO-PD-L1 monoclonal antibody (mAb) was synthesized using avelumab conjugated to desferrioxamine. In vitro binding studies and biodistribution studies were performed with PD-L1+MDA-MB231 cells and MDA-MB231 xenograft mouse models, respectively. Biodistributions were determined at 1, 2, 3, 5, and 7 days post coinjection of [89Zr]Zr-DFO-PD-L1 mAb without or with unlabeled avelumab (10, 20, 40, and 400 µg). RESULTS: [89Zr]Zr-DFO-PD-L1 mAb exhibited high affinity (Kd ∼ 0.3 nM) and detected moderate PD-L1 expression levels in MDA-MB231 cells. The spleen and lymph nodes exhibited the highest [89Zr]Zr-DFO-PD-L1 mAb uptakes in all time points, while MDA-MB231 tumor uptakes were lower but highly retained. In the unlabeled avelumab dose escalation studies, spleen tissue-muscle ratios decreased in a dose-dependent manner indicating specific [89Zr]Zr-DFO-PD-L1 mAb binding to PD-L1. In contrast, lymph node and tumor tissue-muscle ratios increased 4- to 5-fold at 20 and 40 µg avelumab doses. CONCLUSIONS: [89Zr]Zr-DFO-PD-L1 mAb exhibited specific and high affinity for PD-L1 in vitro and had target tissue uptakes correlating with PD-L1 expression levels in vivo. [89Zr]Zr-DFO-PD-L1 mAb uptake in PD-L1+tumors increased with escalating doses of avelumab.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antígeno B7-H1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Deferoxamina/química , Radioisótopos/química , Circonio/química , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales Humanizados , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoconjugados , Ratones , Tomografía de Emisión de Positrones , Distribución Tisular , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur J Nucl Med Mol Imaging ; 46(9): 1840-1849, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31209514

RESUMEN

PURPOSE: In-vivo quantification of tumor uptake of 89-zirconium (89Zr)-labelled monoclonal antibodies (mAbs) with PET provides a potential tool in strategies to optimize tumor targeting and therapeutic efficacy. A specific challenge for 89Zr-immuno-PET is low tumor contrast. This is expected to result in interobserver variation in tumor delineation. Therefore, the aim of this study was to determine interobserver reproducibility of tumor uptake measures by tumor delineation on 89Zr-immuno-PET scans. METHODS: Data were obtained from previously published clinical studies performed with 89Zr-rituximab, 89Zr-cetuximab and 89Zr-trastuzumab. Tumor lesions on 89Zr-immuno-PET were identified as focal uptake exceeding local background by a nuclear medicine physician. Three observers independently manually delineated volumes of interest (VOI). Maximum, peak and mean standardized uptake values (SUVmax, SUVpeak and SUVmean) were used to quantify tumor uptake. Interobserver variability was expressed as the coefficient of variation (CoV). The performance of semi-automatic VOI delineation using 50% of background-corrected ACpeak was described. RESULTS: In total, 103 VOI were delineated (3-6 days post injection (D3-D6)). Tumor uptake (median, interquartile range) was 9.2 (5.2-12.6), 6.9 (4.0-9.6) and 5.5 (3.3-7.8) for SUVmax, SUVpeak and SUVmean. Interobserver variability was 0% (0-12), 0% (0-2) and 7% (5-14), respectively (n = 103). The success rate of the semi-automatic method was 45%. Inclusion of background was the main reason for failure of semi-automatic VOI. CONCLUSIONS: This study shows that interobserver reproducibility of tumor uptake quantification on 89Zr-immuno-PET was excellent for SUVmax and SUVpeak using a standardized manual procedure for tumor segmentation. Semi-automatic delineation was not robust due to limited tumor contrast.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Linfoma de Células B/diagnóstico por imagen , Linfoma de Células B/metabolismo , Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Adulto , Anciano , Transporte Biológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Estudios Retrospectivos
19.
BMC Cancer ; 19(1): 1000, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651282

RESUMEN

BACKGROUNDS: Overexpression of epidermal growth factor receptor (EGFR) has been established as a valid therapeutic target of non-small cell lung cancer (NSCLC). However, the clinical benefit of cetuximab as an EGFR-targeting drug is still controversial, partially due to the lack of effective means to identify suitable patients. This study aimed to investigate the potential of radiolabeled cetuximab as a non-invasive tool to predict cetuximab accumulation in NSCLC tumor xenografts with varying EGFR expression levels. METHODS: The NSCLC tumors in model mice were subjected to in vivo biodistribution study and positron emission tomography (PET) imaging 48 h after injection of either 111In- or 64Cu-labeled cetuximab. The EGFR expression levels of NSCLC tumors were determined by ex vivo immunoblotting. RESULTS: We found that tumors with high EGFR expression had significantly higher [111In]In-DOTA-cetuximab accumulation than tumors with moderate to low EGFR expression (P < 0.05). Strong correlations were found between [111In]In-DOTA-cetuximab tumor uptake and EGFR expression level (r = 0.893), and between [64Cu]Cu-DOTA-cetuximab tumor uptake with EGFR expression level (r = 0.915). PET imaging with [64Cu]Cu-DOTA-cetuximab allowed clear visualization of tumors. CONCLUSION: Our findings suggest that this immuno-PET imaging can be clinically translated as a tool to predict cetuximab accumulation in NSCLC cancer patients prior to cetuximab therapy.


Asunto(s)
Antineoplásicos Inmunológicos/metabolismo , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cetuximab/metabolismo , Cetuximab/uso terapéutico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Animales , Antineoplásicos Inmunológicos/química , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Cetuximab/química , Radioisótopos de Cobre/química , Radioisótopos de Cobre/metabolismo , Receptores ErbB/metabolismo , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radiofármacos/química , Radiofármacos/metabolismo , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Mol Pharm ; 16(9): 3996-4006, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31369274

RESUMEN

Folate receptor α (FRα) is a well-studied tumor biomarker highly expressed in many epithelial tumors such as breast, ovarian, and lung cancers. Mirvetuximab soravtansine (IMGN853) is the antibody-drug conjugate of FRα-binding humanized monoclonal antibody M9346A and cytotoxic maytansinoid drug DM4. IMGN853 is currently being evaluated in multiple clinical trials, in which the immunohistochemical evaluation of an archival tumor or biopsy specimen is used for patient screening. However, limited tissue collection may lead to inaccurate diagnosis due to tumor heterogeneity. Herein, we developed a zirconium-89 (89Zr)-radiolabeled M9346A (89Zr-M9346A) as an immuno-positron emission tomography (immuno-PET) radiotracer to evaluate FRα expression in triple-negative breast cancer (TNBC) patients, providing a novel means to guide intervention with therapeutic IMGN853. In this study, we verified the binding specificity and immunoreactivity of 89Zr-M9346A by in vitro studies in FRαhigh cells (HeLa) and FRαlow cells (OVCAR-3). In vivo PET/computed tomography (PET/CT) imaging in HeLa xenografts and TNBC patient-derived xenograft (PDX) mouse models with various levels of FRα expression demonstrated its targeting specificity and sensitivity. Following PET imaging, the treatment efficiencies of IMGN853, pemetrexed, IMGN853 + pemetrexed, paclitaxel, and saline were assessed in FRαhigh and FRαlow TNBC PDX models. The correlation between 89Zr-M9346A tumor uptake and treatment response using IMGN853 in FRαhigh TNBC PDX model suggested the potential of 89Zr-M9346A PET as a noninvasive tool to prescreen patients based on the in vivo PET imaging for IMGN853-targeted treatment.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Receptor 1 de Folato/inmunología , Receptor 1 de Folato/metabolismo , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Maitansina/análogos & derivados , Radioisótopos/farmacocinética , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Circonio/farmacocinética , Animales , Anticuerpos Monoclonales Humanizados/química , Antineoplásicos Fitogénicos/química , Quimioterapia Combinada , Femenino , Células HeLa , Humanos , Inmunoconjugados/química , Masculino , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Terapia Molecular Dirigida/métodos , Paclitaxel/uso terapéutico , Pemetrexed/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Distribución Tisular , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA