Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mutagenesis ; 38(4): 183-191, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37234002

RESUMEN

Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.


Asunto(s)
Nanoestructuras , Organización para la Cooperación y el Desarrollo Económico , Pruebas de Mutagenicidad/métodos , Nanoestructuras/toxicidad , Nanoestructuras/química , Medición de Riesgo
2.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674936

RESUMEN

There is growing concern about the consumption of synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances, its consequence on human health (general population and workers), and the continuous placing of new SCs on the market. Although drug-induced alterations in neuronal function remain an essential component for theories of drug addiction, accumulating evidence indicates the important role of activated astrocytes, whose essential and pleiotropic role in brain physiology and pathology is well recognized. The study aims to clarify the mechanisms of neurotoxicity induced by one of the most potent SCs, named MAM-2201 (a naphthoyl-indole derivative), by applying a novel three-dimensional (3D) cell culture model, mimicking the physiological and biochemical properties of brain tissues better than traditional two-dimensional in vitro systems. Specifically, human astrocyte spheroids, generated from the D384 astrocyte cell line, were treated with different MAM-2201 concentrations (1-30 µM) and exposure times (24-48 h). MAM-2201 affected, in a concentration- and time-dependent manner, the cell growth and viability, size and morphological structure, E-cadherin and extracellular matrix, CB1-receptors, glial fibrillary acidic protein, and caspase-3/7 activity. The findings demonstrate MAM-2201-induced cytotoxicity to astrocyte spheroids, and support the use of this human 3D cell-based model as species-specific in vitro tool suitable for the evaluation of neurotoxicity induced by other SCs.


Asunto(s)
Astrocitos , Cannabinoides , Humanos , Astrocitos/metabolismo , Cannabinoides/toxicidad , Cannabinoides/química , Naftalenos/toxicidad , Naftalenos/metabolismo , Neuronas/metabolismo
3.
Small ; 18(17): e2200231, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324067

RESUMEN

The European Green Deal outlines ambitions to build a more sustainable, climate neutral, and circular economy by 2050. To achieve this, the European Commission has published the Chemicals Strategy for Sustainability: Towards a Toxic-Free Environment, which provides targets for innovation to better protect human and environmental health, including challenges posed by hazardous chemicals and animal testing. The European project PATROLS (Physiologically Anchored Tools for Realistic nanOmateriaL hazard aSsessment) has addressed multiple aspects of the Chemicals Strategy for Sustainability by establishing a battery of new approach methodologies, including physiologically anchored human and environmental hazard assessment tools to evaluate the safety of engineered nanomaterials. PATROLS has delivered and improved innovative tools to support regulatory decision-making processes. These tools also support the need for reducing regulated vertebrate animal testing; when used at an early stage of the innovation pipeline, the PATROLS tools facilitate the safe and sustainable development of new nano-enabled products before they reach the market.


Asunto(s)
Nanoestructuras , Animales , Salud Ambiental , Unión Europea , Medición de Riesgo
4.
Biotechnol Bioeng ; 117(1): 251-271, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31531968

RESUMEN

Reliably producing functional in vitro organ models, such as organ-on-chip systems, has the potential to considerably advance biology research, drug development time, and resource efficiency. However, despite the ongoing major progress in the field, three-dimensional bone tissue models remain elusive. In this review, we specifically investigate the control of perfusion flow effects as the missing link between isolated culture systems and scientifically exploitable bone models and propose a roadmap toward this goal.


Asunto(s)
Reactores Biológicos , Huesos , Modelos Biológicos , Ingeniería de Tejidos , Animales , Huesos/citología , Huesos/metabolismo , Huesos/fisiología , Técnicas de Cultivo de Célula , Diseño de Equipo , Humanos , Dispositivos Laboratorio en un Chip , Análisis de Matrices Tisulares
5.
Adv Exp Med Biol ; 1041: 245-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204837

RESUMEN

The stem cell microenvironment or niche plays a critical role in the regulation of survival, differentiation and behavior of stem cells and their progenies. Recapitulating each aspect of the stem cell niche is therefore essential for their optimal use in in vitro studies and in vivo as future therapeutics in humans. Engineering of optimal conditions for three-dimensional stem cell culture includes multiple transient and dynamic physiological stimuli, such as blood flow and tissue stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, are among the most recent approaches utilized to replicate the three-dimensional stem cell niche for human tissue fabrication that allow the integration of multiple levels of tissue complexity, including blood flow. This chapter focuses on the physico-chemical and genetic cues utilized to engineer the stem cell niche and provides an overview on how both bioprinting and microfluidics technologies are improving our knowledge in this field for both disease modeling and tissue regeneration, including drug discovery and toxicity high-throughput assays and stem cell-based therapies in humans.


Asunto(s)
Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Nicho de Células Madre , Células Madre/citología , Ingeniería de Tejidos/métodos , Animales , Bioimpresión/métodos , Diferenciación Celular , Humanos , Microfluídica/métodos
6.
Tissue Eng Regen Med ; 20(4): 539-552, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36995643

RESUMEN

Atopic dermatitis (AD) is one of the most prevalent inflammatory skin diseases that is characterized by eczematous rashes, intense itching, dry skin, and sensitive skin. Although AD significantly impacts the quality of life and the number of patients keeps increasing, its pathological mechanism is still unknown because of its complexity. The importance of developing new in vitro three-dimensional (3D) models has been underlined in order to understand the mechanisms for the development of therapeutics since the limitations of 2D models or animal models have been repeatedly reported. Thus, the new in vitro AD models should not only be created in 3D structure, but also reflect the pathological characteristics of AD, which are known to be associated with Th2-mediated inflammatory responses, epidermal barrier disruption, increased dermal T-cell infiltration, filaggrin down-regulation, or microbial imbalance. In this review, we introduce various types of in vitro skin models including 3D culture methods, skin-on-a-chips, and skin organoids, as well as their applications to AD modeling for drug screening and mechanistic studies.


Asunto(s)
Dermatitis Atópica , Animales , Dermatitis Atópica/etiología , Dermatitis Atópica/patología , Dermatitis Atópica/terapia , Calidad de Vida , Piel/patología
7.
Pharmacol Ther ; 239: 108276, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36055421

RESUMEN

Digestive system cancers account for nearly half of all cancers around the world and have a high mortality rate. Cell culture and animal models represent cornerstones of digestive cancer research. However, their ability to enable cancer precision medicine is limited. Cell culture models cannot retain the genetic and phenotypic heterogeneity of tumors and lack tumor microenvironment (TME). Patient-derived xenograft mouse models are not suitable for immune-oncology research. While humanized mouse models are time- and cost-consuming. Suitable preclinical models, which can facilitate the understanding of mechanisms of tumor progression and develop new therapeutic strategies, are in high demand. This review article summarizes the recent progress on the establishment of TME by using tumor organoid models and microfluidic systems. The main challenges regarding the translation of organoid models from bench to bedside are discussed. The integration of organoids and a microfluidic platform is the emerging trend in drug screening and precision medicine. A future prospective on this field is also provided.


Asunto(s)
Neoplasias del Sistema Digestivo , Neoplasias Gastrointestinales , Humanos , Animales , Ratones , Medicina de Precisión , Organoides/patología , Microambiente Tumoral , Neoplasias Gastrointestinales/patología , Neoplasias del Sistema Digestivo/patología
8.
Acta Biomater ; 152: 300-312, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055606

RESUMEN

Cardiac fibrosis is characterized by a maladaptive remodeling of the myocardium, which is controlled by various inflammatory pathways and cytokines. This remodeling is accompanied by a significant stiffening of the matrix, which may contribute to further activate collagen synthesis and scar formation. Evidence suggests that TGF-ß1 signaling, the main pro-fibrotic pathway in cardiac fibrosis, might cooperates with the Hippo transcriptional pathway by activating YAP. To directly test the cooperation of mechanical cues and paracrine signaling in cardiac fibrosis, we developed a 3D model of cardiac extracellular matrix remodeling by generating tissue blocks with Gelatin Methacrylate, a bioink with tunable stiffness, and human cardiosphere-derived stromal cells. Using this strategy, we assessed the cooperation of TGF-ß1 and YAP transcriptional factor to matrix compaction. Using mechanical compression tests, Masson's trichrome staining, immunofluorescence, and RT-qPCR, we demonstrate that pharmacological inhibition of YAP complex reverts almost completely the pro-compaction phenotype and the matrix-remodeling activity of cells treated with TGF-ß1. Our data show a direct connection between the classical pro-fibrotic signaling driven by TGF-ß1 and the mechanically activated pathways under the control of YAP in cardiac remodeling. Treatment with the elective drug targeting YAP is sufficient to override this cooperation with potential benefits for anti-fibrotic therapeutic applications. STATEMENT OF SIGNIFICANCE: Heart failure is a pathology in continuous growth worldwide, characterized by a progressive fibrosis, which decreases the pumping efficiency of the heart. Experimental evidences suggest that fibroblasts, normally responsible for the turnover of the cardiac matrix, are involved in myocardial fibrosis by differentiating into 'myofibroblasts'. These cells remodel extensively the cardiac extracellular matrix and deposit abundant collagen with a consequent increase in stiffness. In the present contribution, we propose a new 3D model of cell-mediated cardiac extracellular matrix stiffening to investigate the mechano-chemical mechanisms underlying the onset of the pathology. We also consolidate a pharmacological treatment able to prevent the pathological activation of fibroblasts with potential benefits for anti-fibrotic treatment of the failing heart.


Asunto(s)
Miocardio , Miofibroblastos , Factor de Crecimiento Transformador beta1 , Proteínas Señalizadoras YAP , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis , Gelatina , Humanos , Metacrilatos/metabolismo , Miocardio/patología , Miofibroblastos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP/metabolismo
9.
Adv Drug Deliv Rev ; 179: 114018, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34688685

RESUMEN

Radiation therapy is a critical component of oncologic management, with more than half of all cancer patients requiring radiotherapy at some point during their disease course. Over the last decade, there has been increasing interest in charged particle therapy due to its advantageous physical and radiobiologic properties, with the therapeutic use of proton beam therapy (PBT) expanding worldwide. However, there remain large gaps in our knowledge of the radiobiologic mechanisms that underlie key aspects of PBT, such as variations in relative biologic effectiveness (RBE), radioresistance, DNA damage response and repair pathways, as well as immunologic effects. In addition, while the emerging technique of ultra-high dose rate or FLASH radiotherapy, with its potential to further reduce normal tissue toxicities, is an exciting development, in-depth study is needed into the postulated biochemical mechanisms that underpin the FLASH effect such as the oxygen depletion hypothesis as well as the relative contributions of immune responses and the tumor microenvironment. Further investigation is also required to ensure that the FLASH effect is not diminished or lost in PBT. Current methods to evaluate the biologic effects of charged particle therapy rely heavily on 2D cell culture systems and/or animal models. However, both of these methods have well-recognized limitations which limit translatability of findings from bench to bedside. The advent of novel three-dimensional in-vitro tumor models offers a more physiologically relevant and high throughput in-vitro system for the study of tumor development as well as novel therapeutic approaches such as PBT. Advances in 3D cell culture methods, together with knowledge of disease mechanism, biomarkers, and genomic data, can be used to design personalized 3D models that most closely recapitulate tumor microenvironmental factors promoting a particular disease phenotype, moving 3D models and PBT into the age of precision medicine.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Terapia de Protones/métodos , Dosis de Radiación , Adyuvantes Inmunológicos/farmacología , Biomarcadores de Tumor , Terapia Combinada , Reparación del ADN/efectos de la radiación , Genómica , Humanos , Terapia de Protones/efectos adversos , Tolerancia a Radiación/efectos de la radiación , Microambiente Tumoral/fisiología
10.
Bioengineering (Basel) ; 8(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677208

RESUMEN

The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.

11.
Nanomaterials (Basel) ; 10(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992722

RESUMEN

Changes in the genetic material can lead to serious human health defects, as mutations in somatic cells may cause cancer and can contribute to other chronic diseases. Genotoxic events can appear at both the DNA, chromosomal or (during mitosis) whole genome level. The study of mechanisms leading to genotoxicity is crucially important, as well as the detection of potentially genotoxic compounds. We consider the current state of the art and describe here the main endpoints applied in standard human in vitro models as well as new advanced 3D models that are closer to the in vivo situation. We performed a literature review of in vitro studies published from 2000-2020 (August) dedicated to the genotoxicity of nanomaterials (NMs) in new models. Methods suitable for detection of genotoxicity of NMs will be presented with a focus on advances in miniaturization, organ-on-a-chip and high throughput methods.

12.
Trends Biotechnol ; 37(9): 1011-1028, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30902347

RESUMEN

For several decades microparticles have been exclusively and extensively explored as spherical drug delivery vehicles and large-scale cell expansion carriers. More recently, microparticulate structures gained interest in broader bioengineering fields, integrating myriad strategies that include bottom-up tissue engineering, 3D bioprinting, and the development of tissue/disease models. The concept of bulk spherical micrometric particles as adequate supports for cell cultivation has been challenged, and systems with finely tuned geometric designs and (bio)chemical/physical features are current key players in impacting technologies. Herein, we critically review the state of the art and future trends of biomaterial microparticles in contact with cells and tissues, excluding internalization studies, and with emphasis on innovative particle design and applications.


Asunto(s)
Ingeniería Biomédica , Ingeniería de Tejidos , Andamios del Tejido , Materiales Biocompatibles , Bioimpresión , Impresión Tridimensional , Medicina Regenerativa
13.
Front Cardiovasc Med ; 6: 52, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080805

RESUMEN

Cardiac fibroblasts play a key role in chronic heart failure. The conversion from cardiac fibroblast to myofibroblast as a result of cardiac injury, will lead to excessive matrix deposition and a perpetuation of pro-fibrotic signaling. Cardiac cell therapy for chronic heart failure may be able to target fibroblast behavior in a paracrine fashion. However, no reliable human fibrotic tissue model exists to evaluate this potential effect of cardiac cell therapy. Using a gelatin methacryloyl hydrogel and human fetal cardiac fibroblasts (hfCF), we created a 3D in vitro model of human cardiac fibrosis. This model was used to study the possibility to modulate cellular fibrotic responses. Our approach demonstrated paracrine inhibitory effects of cardiac progenitor cells (CPC) on both cardiac fibroblast activation and collagen synthesis in vitro and revealed that continuous cross-talk between hfCF and CPC seems to be indispensable for the observed anti-fibrotic effect.

14.
Adv Healthc Mater ; 6(11)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28498548

RESUMEN

Activation of cardiac fibroblasts into myofibroblasts is considered to play an essential role in cardiac remodeling and fibrosis. A limiting factor in studying this process is the spontaneous activation of cardiac fibroblasts when cultured on two-dimensional (2D) culture plates. In this study, a simplified three-dimensional (3D) hydrogel platform of contractile cardiac tissue, stimulated by transforming growth factor-ß1 (TGF-ß1), is presented to recapitulate a fibrogenic microenvironment. It is hypothesized that the quiescent state of cardiac fibroblasts can be maintained by mimicking the mechanical stiffness of native heart tissue. To test this hypothesis, a 3D cell culture model consisting of cardiomyocytes and cardiac fibroblasts encapsulated within a mechanically engineered gelatin methacryloyl hydrogel, is developed. The study shows that cardiac fibroblasts maintain their quiescent phenotype in mechanically tuned hydrogels. Additionally, treatment with a beta-adrenergic agonist increases beating frequency, demonstrating physiologic-like behavior of the heart constructs. Subsequently, quiescent cardiac fibroblasts within the constructs are activated by the exogenous addition of TGF-ß1. The expression of fibrotic protein markers (and the functional changes in mechanical stiffness) in the fibrotic-like tissues are analyzed to validate the model. Overall, this 3D engineered culture model of contractile cardiac tissue enables controlled activation of cardiac fibroblasts, demonstrating the usability of this platform to study fibrotic remodeling.


Asunto(s)
Cardiomiopatías/metabolismo , Microambiente Celular , Fibroblastos/metabolismo , Modelos Cardiovasculares , Miocardio/metabolismo , Animales , Cardiomiopatías/patología , Células Cultivadas , Fibroblastos/patología , Fibrosis , Hidrogeles/química , Miocardio/patología , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA