Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(6): e26679, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647038

RESUMEN

Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, ß1, and ß2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased ß1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and ß band oscillations and may have relevance for pain therapies.


Asunto(s)
Dolor Agudo , Electroencefalografía , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Dolor Agudo/fisiopatología , Dolor Agudo/terapia , Adulto , Adulto Joven , Electroencefalografía/métodos , Umbral del Dolor/fisiología , Calor , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Corteza Prefontal Dorsolateral/fisiología , Corteza Prefontal Dorsolateral/fisiopatología
2.
Hum Brain Mapp ; 43(18): 5452-5464, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35848373

RESUMEN

Individuals at clinical high risk (CHR) for psychosis exhibit a compromised mismatch negativity (MMN) response, which indicates dysfunction of pre-attentive deviance processing. Event-related potential and time-frequency (TF) information, in combination with clinical and cognitive profiles, may provide insight into the pathophysiology and psychopathology of the CHR stage and predict the prognosis of CHR individuals. A total of 92 individuals with CHR were recruited and followed up regularly for up to 3 years. Individuals with CHR were classified into three clinical subtypes demonstrated previously, specifically 28 from Cluster 1 (characterized by extensive negative symptoms and cognitive deficits), 31 from Cluster 2 (characterized by thought and behavioral disorganization, with moderate cognitive impairment), and 33 from Cluster 3 (characterized by the mildest symptoms and cognitive deficits). Auditory MMN to frequency and duration deviants was assessed. The event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were acquired using TF analysis. Predictive indices for remission were identified using logistic regression analyses. As expected, reduced frequency MMN (fMMN) and duration MMN (dMMN) responses were noted in Cluster 1 relative to the other two clusters. In the TF analysis, Cluster 1 showed decreased theta and alpha ITC in response to deviant stimuli. The regression analyses revealed that dMMN latency and alpha ERSP to duration deviants, theta ITC to frequency deviants and alpha ERSP to frequency deviants, and fMMN latency were significant MMN predictors of remission for the three clusters. MMN variables outperformed behavioral variables in predicting remission of Clusters 1 and 2. Our findings indicate relatively disrupted automatic auditory processing in a certain CHR subtype and a close affinity between these electrophysiological indexes and clinical profiles within different clusters. Furthermore, MMN indexes may serve as predictors of subsequent remission from the CHR state. These findings suggest that the auditory MMN response is a potential neurophysiological marker for distinct clinical subtypes of CHR.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Electroencefalografía , Percepción Auditiva/fisiología , Potenciales Evocados/fisiología , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica
3.
Eur Arch Psychiatry Clin Neurosci ; 272(3): 449-459, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34333669

RESUMEN

Individuals at clinical high risk (CHR) for psychosis exhibit a reduced P300 oddball response, which indicates deficits in attention and working memory processes. Previous studies have mainly researched these responses in the temporal domain; hence, non-phase-locked or induced neural activities may have been ignored. Event-related potential (ERP) and time-frequency (TF) information, combined with clinical and cognitive profiles, may provide an insight into the pathophysiology and psychopathology of the CHR stage. The 104 CHR individuals who completed cognitive assessments and ERP tests were recruited and followed up between 2016 and 2018. Individuals with CHR were classified by three clinical subtypes demonstrated before, specifically 32 from Cluster-1 (characterized by extensive negative symptoms and cognitive deficits, at the highest risk for conversion to psychosis), 34 from Cluster-2 (characterized by thought and behavioral disorganization, with moderate cognitive impairment), and 38 from Cluster-3 (characterized by the mildest symptoms and cognitive deficits). Electroencephalograms were recorded during the auditory oddball paradigm. The P300 ERPs were analyzed in the temporal domain. The event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were acquired by TF analysis. A reduced P300 response to target tones was noted in Cluster-1 relative to the other two clusters. Moreover, the P300 amplitude of Cluster-1 was associated with speed of processing (SoP) scores. Furthermore, the P300 amplitude of Cluster-3 was significantly correlated with verbal and visual learning scores. In the TF analysis, decreased delta ERSP and ITC were observed in Cluster-1; delta ITC was associated with SoP scores in Cluster-3. The results indicate relatively disrupted oddball responses in a certain CHR subtype and a close affinity between these electrophysiological indexes and attention, working memory, and declarative memory within different CHR clusters. These findings suggest that the auditory oddball response is a potential neurophysiological marker for distinct clinical subtypes of CHR.


Asunto(s)
Trastornos del Conocimiento , Trastornos Psicóticos , Estimulación Acústica/métodos , Electroencefalografía/métodos , Potenciales Relacionados con Evento P300/fisiología , Potenciales Evocados , Humanos
4.
Neuroimage ; 235: 118051, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33848624

RESUMEN

Neural oscillations constitute an intrinsic property of functional brain organization that facilitates the tracking of linguistic units at multiple time scales through brain-to-stimulus alignment. This ubiquitous neural principle has been shown to facilitate speech segmentation and word learning based on statistical regularities. However, there is no common agreement yet on whether speech segmentation is mediated by a transition of neural synchronization from syllable to word rate, or whether the two time scales are concurrently tracked. Furthermore, it is currently unknown whether syllable transition probability contributes to speech segmentation when lexical stress cues can be directly used to extract word forms. Using Inter-Trial Coherence (ITC) analyses in combinations with Event-Related Potentials (ERPs), we showed that speech segmentation based on both statistical regularities and lexical stress cues was accompanied by concurrent neural synchronization to syllables and words. In particular, ITC at the word rate was generally higher in structured compared to random sequences, and this effect was particularly pronounced in the flat condition. Furthermore, ITC at the syllable rate dynamically increased across the blocks of the flat condition, whereas a similar modulation was not observed in the stressed condition. Notably, in the flat condition ITC at both time scales correlated with each other, and changes in neural synchronization were accompanied by a rapid reconfiguration of the P200 and N400 components with a close relationship between ITC and ERPs. These results highlight distinct computational principles governing neural synchronization to pertinent linguistic units while segmenting speech under different listening conditions.


Asunto(s)
Percepción del Habla/fisiología , Medición de la Producción del Habla/estadística & datos numéricos , Adulto , Electroencefalografía , Potenciales Evocados , Femenino , Humanos , Lenguaje , Masculino , Fonética , Habla , Adulto Joven
5.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204504

RESUMEN

Inhibitory control is a cognitive process that inhibits a response. It is used in everyday activities, such as driving a motorcycle, driving a car and playing a game. The effect of this process can be compared to the red traffic light in the real world. In this study, we investigated brain connectivity under human inhibitory control using the phase lag index and inter-trial coherence (ITC). The human brain connectivity gives a more accurate representation of the functional neural network. Results of electroencephalography (EEG), the data sets were generated from twelve healthy subjects during left and right hand inhibitions using the auditory stop-signal task, showed that the inter-trial coherence in delta (1-4 Hz) and theta (4-7 Hz) band powers increased over the frontal and temporal lobe of the brain. These EEG delta and theta band activities neural markers have been related to human inhibition in the frontal lobe. In addition, inter-trial coherence in the delta-theta and alpha (8-12 Hz) band powers increased at the occipital lobe through visual stimulation. Moreover, the highest brain connectivity was observed under inhibitory control in the frontal lobe between F3-F4 channels compared to temporal and occipital lobes. The greater EEG coherence and phase lag index in the frontal lobe is associated with the human response inhibition. These findings revealed new insights to understand the neural network of brain connectivity and underlying mechanisms during human response inhibition.


Asunto(s)
Encéfalo/fisiología , Lóbulo Frontal/fisiología , Lóbulo Temporal/fisiología , Ritmo Teta/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Electroencefalografía , Femenino , Lóbulo Frontal/diagnóstico por imagen , Humanos , Masculino , Estimulación Luminosa , Lóbulo Temporal/diagnóstico por imagen
6.
Bipolar Disord ; 20(1): 49-59, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29024302

RESUMEN

BACKGROUND: Bipolar disorder (BD) is associated with reductions in the P3b event-related potential (ERP) response to target auditory stimuli, which suggests deficits in context updating. Previous studies have typically examined these responses in the temporal domain, which may not capture alterations in specific frequencies of phase-locked or induced electrophysiological activity. Therefore, the present study examined early and late ERPs in temporal and frequency domains in a bipolar sample with and without current psychotic features. METHODS: The electroencephalogram (EEG) was recorded during an auditory oddball task. Seventy-five BD patients and 98 healthy controls (HCs) discriminated between standard and target tones. N1 ERPs to standards and P3b ERPs to targets were analyzed in the temporal domain. Event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were analyzed in the frequency domain. RESULTS: The early N1 response to standard tones was not significantly different between the total HC and BD samples irrespective of psychotic features. However, N1 amplitude was reduced in BD patients with psychotic features (BDP) compared to HCs and BD patients without psychotic features. P3b was reduced in BD patients versus HCs, with the BDP sample having the most reduced amplitude. In the time-frequency analysis, delta and theta ERSP and ITC were reduced across the time window for both standard and target stimuli in BD patients compared to HCs, but did not differ in the psychotic features analysis. CONCLUSIONS: The results provide neural evidence that BD is associated with disrupted sensory, attentional, and cognitive processing of auditory stimuli, which may be worsened with the presence of psychotic features.


Asunto(s)
Trastorno Bipolar , Potenciales Relacionados con Evento P300/fisiología , Estimulación Acústica/métodos , Adulto , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/fisiopatología , Cognición/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Masculino
7.
J Neural Eng ; 21(2)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626760

RESUMEN

Objective. In recent years, electroencephalogram (EEG)-based brain-computer interfaces (BCIs) applied to inner speech classification have gathered attention for their potential to provide a communication channel for individuals with speech disabilities. However, existing methodologies for this task fall short in achieving acceptable accuracy for real-life implementation. This paper concentrated on exploring the possibility of using inter-trial coherence (ITC) as a feature extraction technique to enhance inner speech classification accuracy in EEG-based BCIs.Approach. To address the objective, this work presents a novel methodology that employs ITC for feature extraction within a complex Morlet time-frequency representation. The study involves a dataset comprising EEG recordings of four different words for ten subjects, with three recording sessions per subject. The extracted features are then classified using k-nearest-neighbors (kNNs) and support vector machine (SVM).Main results. The average classification accuracy achieved using the proposed methodology is 56.08% for kNN and 59.55% for SVM. These results demonstrate comparable or superior performance in comparison to previous works. The exploration of inter-trial phase coherence as a feature extraction technique proves promising for enhancing accuracy in inner speech classification within EEG-based BCIs.Significance. This study contributes to the advancement of EEG-based BCIs for inner speech classification by introducing a feature extraction methodology using ITC. The obtained results, on par or superior to previous works, highlight the potential significance of this approach in improving the accuracy of BCI systems. The exploration of this technique lays the groundwork for further research toward inner speech decoding.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Habla , Humanos , Electroencefalografía/métodos , Electroencefalografía/clasificación , Masculino , Habla/fisiología , Femenino , Adulto , Máquina de Vectores de Soporte , Adulto Joven , Reproducibilidad de los Resultados , Algoritmos
8.
Clin EEG Neurosci ; 54(4): 409-419, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35341344

RESUMEN

The mismatch negativity (MMN) event-related potential (ERP) indexes relatively automatic detection of changes in sensory stimuli and is typically attenuated in individuals with schizophrenia. However, contributions of different frequencies of electroencephalographic (EEG) activity to the MMN and the later P3a attentional orienting response in schizophrenia are poorly understood and were the focus of the present study. Participants with a schizophrenia-spectrum disorder (n = 85) and non-psychiatric control participants (n = 74) completed a passive auditory oddball task containing 10% 50 ms "deviant" tones and 90% 100 ms "standard" tones. EEG data were analyzed using spatial principal component analysis (PCA) applied to wavelet-based time-frequency analysis and MMN and P3a ERPs. The schizophrenia group compared to the control group had smaller MMN amplitudes and lower deviant-minus-standard theta but not alpha event-related spectral perturbation (ERSP) after accounting for participant age and sex. Larger MMN and P3a amplitudes but not latencies were correlated with greater theta and alpha time-frequency activity. Multiple linear regression analyses revealed that control participants showed robust relationships between larger MMN amplitudes and greater deviant-minus-standard theta inter-trial coherence (ITC) and between larger P3a amplitudes and greater deviant-minus-standard theta ERSP, whereas these dynamic neural processes were less tightly coupled in participants with a schizophrenia-spectrum disorder. Study results help clarify frequency-based contributions of time-domain (ie, ERP) responses and indicate a potential disturbance in the neural dynamics of detecting change in sensory stimuli in schizophrenia. Overall, findings add to the growing body of evidence that psychotic illness is associated with widespread neural dysfunction in the theta frequency band.


Asunto(s)
Esquizofrenia , Humanos , Electroencefalografía/métodos , Estimulación Acústica/métodos , Potenciales Evocados , Atención/fisiología , Potenciales Evocados Auditivos/fisiología
9.
J Autism Dev Disord ; 53(12): 4856-4871, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36207652

RESUMEN

Sensory abnormalities are characteristic of autism and schizophrenia. In autism, greater trial-to-trial variability (TTV) in sensory neural responses suggest that the system is more unstable. However, these findings have only been identified in the amplitude and not in the timing of neural responses, and have not been fully explored in schizophrenia. TTV in event-related potential amplitudes and inter-trial coherence (ITC) were assessed in the auditory mismatch negativity (MMN) in autism, schizophrenia, and controls. MMN was largest in autism and smallest in schizophrenia, and TTV was greater in autism and schizophrenia compared to controls. There were no differences in ITC. Greater TTV appears to be characteristic of both autism and schizophrenia, implicating several neural mechanisms that could underlie sensory instability.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Esquizofrenia , Humanos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica , Electroencefalografía , Potenciales Evocados
10.
J Autism Dev Disord ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932270

RESUMEN

Auditory steady-state response (ASSR) has been studied as a potential biomarker for abnormal auditory sensory processing in autism spectrum disorder (ASD), with mixed results. Motivated by prior somatosensory findings of group differences in inter-trial coherence (ITC) between ASD and typically developing (TD) individuals at twice the steady-state stimulation frequency, we examined ASSR at 25 and 50 as well as 43 and 86 Hz in response to 25-Hz and 43-Hz auditory stimuli, respectively, using magnetoencephalography. Data were recorded from 22 ASD and 31 TD children, ages 6-17 years. ITC measures showed prominent ASSRs at the stimulation and double frequencies, without significant group differences. These results do not support ASSR as a robust ASD biomarker of abnormal auditory processing in ASD. Furthermore, the previously observed atypical double-frequency somatosensory response in ASD did not generalize to the auditory modality. Thus, the hypothesis about modality-independent abnormal local connectivity in ASD was not supported.

11.
Front Psychol ; 14: 1107176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168425

RESUMEN

Driver's cognitive workload has an important impact on driving safety. This paper carries out an on-road experiment to analyse the impact from three innovative aspects: significance analysis of electroencephalogram (EEG) under different cognitive workloads, distribution of EEG maps with different frequency signals and influence of different cognitive workloads on driving safety based on EEG. First, the EEG signals are processed and four frequencies of delta, theta, alpha and beta are obtained. Then, the time-frequency transform and power spectral density calculation are carried out by short-time Fourier to study the correlation of each frequency signal of different workload states, as well as the distribution pattern of the EEG topographic map. Finally, the time and space energy and phase changes in each cognitive task event are studied through event-related spectral perturbation and inter-trial coherence. Results show the difference between left and right brains, as well as the resource occupancy trends of the monitor, perception, visual and auditory channels in different driving conditions. Results also demonstrate that the increase in cognitive workloads will directly affect driving safety. Changes in cognitive workload have different effects on brain signals, and this paper can provide a theoretical basis for improving driving safety under different cognitive workloads. Mastering the EEG characteristics of signals can provide more targeted supervision and safety warnings for the driver.

12.
Brain Sci ; 13(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37190575

RESUMEN

Precise timing prediction (TP) enables the brain to accurately predict the occurrence of upcoming events in millisecond timescale, which is fundamental for adaptive behaviors. The neural effect of the TP within a single sensory modality has been widely studied. However, less is known about how precise TP works when the brain is concurrently faced with multimodality sensory inputs. Modality attention (MA) is a crucial cognitive function for dealing with the overwhelming information induced by multimodality sensory inputs. Therefore, it is necessary to investigate whether and how the MA influences the neural effects of the precise TP. This study designed a visual-auditory temporal discrimination task, in which the MA was allocated to visual or auditory modality, and the TP was manipulated into no timing prediction (NTP), matched timing prediction (MTP), and violated timing prediction (VTP) conditions. Behavioral and electroencephalogram (EEG) data were recorded from 27 subjects, event-related potentials (ERP), time-frequency distributions of inter-trial coherence (ITC), and event-related spectral perturbation (ERSP) were analyzed. In the visual modality, precise TP led to N1 amplitude and 200-400 ms theta ITC variations. Such variations only emerged when the MA was attended. In auditory modality, the MTP had the largest P2 amplitude and delta ITC than other TP conditions when the MA was attended, whereas the distinctions disappeared when the MA was unattended. The results suggest that the MA promoted the neural effects of the precise TP in early sensory processing, which provides more neural evidence for better understanding the interactions between the TP and MA.

13.
Brain Behav ; 13(8): e3176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624638

RESUMEN

INTRODUCTION: The motor-related bioelectric brain activity of healthy young and old subjects was studied to understand the effect of aging on motor execution. A visually cued finger tapping movement paradigm and high-density EEG were used to examine the time and frequency characteristics. METHODS: Twenty-two young and 22 healthy elderly adults participated in the study. Repeated trials of left and right index finger movements were recorded with a 128-channel EEG. Event-Related Spectral Perturbation (ERSP), Inter Trial Coherence (ITC), and Functional Connectivity were computed and compared between the age groups. RESULTS: An age-dependent theta and alpha band ERSP decrease was observed over the frontal-midline area. Decrease of beta band ERSP was found over the ipsilateral central-parietal regions. Significant ITC differences were found in the delta and theta bands between old and young subjects over the contralateral parietal-occipital areas. The spatial extent of increased ITC values was larger in old subjects. The movement execution of older subjects showed higher global efficiency in the delta and theta bands, and higher local efficiency and node strengths in the delta, theta, alpha, and beta bands. CONCLUSION: As functional compensation of aging, elderly motor networks involve more nonmotor, parietal-occipital, and frontal areas, with higher global and local efficiency, node strength. ERSP and ITC changes seem to be sensitive and complementary biomarkers of age-related motor execution.


Asunto(s)
Envejecimiento , Encéfalo , Adulto , Anciano , Humanos , Señales (Psicología) , Electroencefalografía , Dedos
14.
Front Psychiatry ; 13: 902332, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990048

RESUMEN

Autism Spectrum (AS) is defined primarily by differences in social interactions, with impairments in sensory processing also characterizing the condition. In the search for neurophysiological biomarkers associated with traits relevant to the condition, focusing on sensory processing offers a path that is likely to be translatable across populations with different degrees of ability, as well as into animal models and across imaging modalities. In a prior study, a somatosensory neurophysiological signature of AS was identified using magnetoencephalography (MEG). Specifically, source estimation results showed differences between AS and neurotypically developing (NTD) subjects in the brain response to 25-Hz vibrotactile stimulation of the right fingertips, with lower inter-trial coherence (ITC) observed in the AS group. Here, we examined whether these group differences can be detected without source estimation using scalp electroencephalography (EEG), which is more commonly available in clinical settings than MEG, and therefore offers a greater potential for clinical translation. To that end, we recorded simultaneous whole-head MEG and EEG in 14 AS and 10 NTD subjects (age 15-28 years) using the same vibrotactile paradigm. Based on the scalp topographies, small sets of left hemisphere MEG and EEG sensors showing the maximum overall ITC were selected for group comparisons. Significant differences between the AS and NTD groups in ITC at 25 Hz as well as at 50 Hz were recorded in both MEG and EEG sensor data. For each measure, the mean ITC was lower in the AS than in the NTD group. EEG ITC values correlated with behaviorally assessed somatosensory sensation avoiding scores. The results show that information about ITC from MEG and EEG signals have substantial overlap, and thus EEG sensor-based ITC measures of the AS somatosensory processing biomarker previously identified using source localized MEG data have a potential to be developed into clinical use in AS, thanks to the higher accessibility to EEG in clinical settings.

15.
Brain Struct Funct ; 227(4): 1357-1370, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35320828

RESUMEN

The temporo-parietal junction (TPJ) is a cortical area contributing to a multiplicity of visual, language-related, and cognitive functions. In line with this functional richness, also the organization of the underlying white matter is highly complex and includes several bundles. The few studies tackling the outcome and neurological burdens of surgical operations addressing TPJ document the presence of language disturbances and visual field damages, with the latter hardly recovered in time. This observation advocates for identifying and functionally monitoring the optic radiation (OR) bundles that cross the white matter below the TPJ. In the present study, we adopted a multimodal approach to address the anatomo-functional correlates of the OR's dorsal loop. In particular, we combined cadavers' dissection with tractographic and electrophysiological data collected in drug-resistant epileptic patients explored by stereoelectroencephalography (SEEG). Cadaver dissection allowed us to appreciate the course and topography of the dorsal loop. More surprisingly, both tractographic and electrophysiological observations converged on a unitary picture highly coherent with the data obtained by neuroanatomical observation. The combination of diverse and multimodal observations allows overcoming the limitations intrinsic to single methodologies, defining a unitary picture which makes it possible to investigate the dorsal loop both presurgically and at the individual patient level, ultimately contributing to limit the postsurgical damages. Notwithstanding, such a combined approach could serve as a model of investigation for future neuroanatomical inquiries tackling white matter fibers anatomy and function through SEEG-derived neurophysiological data.


Asunto(s)
Sustancia Blanca , Cadáver , Disección/métodos , Electrofisiología , Humanos , Fibras Nerviosas , Neuroanatomía , Sustancia Blanca/anatomía & histología
16.
J Neurosci Methods ; 377: 109628, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35618165

RESUMEN

BACKGROUND: Cervical vestibular evoked myogenic potentials (cVEMPs) are surface-recorded responses that reflect saccular function. Analysis of cVEMPs has focused, nearly exclusively, on time-domain waveform measurements such as amplitude and latency of response peaks, but synchrony-based measures have not been previously reported. NEW METHOD: Time-frequency analyses were used to apply an objective response-detection algorithm and to quantify response synchrony. These methods are new to VEMP literature and have been adapted from previous auditory research. Air-conducted cVEMPs were elicited using a 500 Hz tone burst in twenty young, healthy participants. RESULTS: Time-frequency characteristics of cVEMPs and time-frequency boundaries for response energy were established. An inter-trial coherence analysis approach revealed highly synchronous responses with representative inter-trial coherence values of approximately 0.7. COMPARISON WITH EXISTING METHODS: Inter-trial coherence measures were highly correlated with conventional amplitude measures in this group of young, healthy adults (R2 = 0.91 - 0.94), although the frequencies at which these measures had their largest magnitude were unrelated (R2 =.02). Conventional measures of peak-to-peak amplitude and latency were consistent with previous literature. Interaural asymmetry ratios were comparable between amplitude- and synchrony-based measures. CONCLUSIONS: Synchrony-based time-frequency analyses were successfully applied to cVEMP data and this type of analysis may be helpful to differentiate synchrony from amplitude in populations with disrupted neural synchrony.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Estimulación Acústica/métodos , Adulto , Humanos , Potenciales Vestibulares Miogénicos Evocados/fisiología
17.
J Neural Eng ; 18(4)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34010826

RESUMEN

Objective. Stimulus-elicited changes in electroencephalography (EEG) recordings can be represented using Fourier magnitude and phase features (Makeiget al(2004Trends Cogn. Sci.8204-10)). The present study aimed to quantify how much information about hearing responses are contained in the magnitude, quantified by event-related spectral perturbations (ERSPs); and the phase, quantified by inter-trial coherence (ITC). By testing if one feature contained more information and whether this information was mutually exclusive to the features, we aimed to relate specific EEG magnitude and phase features to hearing perception.Approach.EEG responses were recorded from 20 adults who were presented with acoustic stimuli, and 20 adult cochlear implant users with electrical stimuli. Both groups were presented with short, 50 ms stimuli at varying intensity levels relative to their hearing thresholds. Extracted ERSP and ITC features were inputs for a linear discriminant analysis classifier (Wonget al(2016J. Neural. Eng.13036003)). The classifier then predicted whether the EEG signal contained information about the sound stimuli based on the input features. Classifier decoding accuracy was quantified with the mutual information measure (Cottaris and Elfar (2009J. Neural. Eng.6026007), Hawelleket al(2016Proc. Natl Acad. Sci.11313492-7)), and compared across the two feature sets, and to when both feature sets were combined.Main results. We found that classifiers using either ITC or ERSP feature sets were both able to decode hearing perception, but ITC-feature classifiers were able to decode responses to a lower but still audible stimulation intensity, making ITC more useful than ERSP for hearing threshold estimation. We also found that combining the information from both feature sets did not improve decoding significantly, implying that ERSP brain dynamics has a limited contribution to the EEG response, possibly due to the stimuli used in this study.Significance.We successfully related hearing perception to an EEG measure, which does not require behavioral feedback from the listener; an objective measure is important in both neuroscience research and clinical audiology.


Asunto(s)
Implantes Cocleares , Potenciales Evocados Auditivos , Estimulación Acústica , Acústica , Umbral Auditivo , Electroencefalografía , Audición
18.
Front Hum Neurosci ; 15: 581525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163336

RESUMEN

We quantified the electroencephalogram signals associated with the selective attention processing of experienced simultaneous interpreters and calculated the phase-locked responses evoked by a 40-Hz auditory steady-state response (40-Hz ASSR) and the values of robust inter-trial coherence (ITC) for environmental changes. Since we assumed that an interpreter's attention ability improves with an increase in the number of years of experience of simultaneous interpretation, we divided the participants into two groups based on their simultaneous interpretation experience: experts with more than 15 years of experience (E group; n = 7) and beginners with <1 year (B group; n = 15). We also compared two conditions: simultaneous interpretation (SI) and shadowing (SH). We found a significant interaction in the ITC between years of SI experience (E and B groups) and tasks (SI and SH). This result demonstrates that the number of years of SI experience influences selective attention during interpretation.

19.
Clin Neurophysiol ; 132(8): 1802-1812, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34130248

RESUMEN

OBJECTIVE: Altered sensory processing is common in intellectual disability (ID). Here, we study electroencephalographic responses to auditory stimulation in human subjects presenting a rare condition (mutations in SYNGAP1) which causes ID, epilepsy and autism. METHODS: Auditory evoked potentials, time-frequency and inter-trial coherence analyses were used to compare subjects with SYNGAP1 mutations with Down syndrome (DS) and neurotypical (NT) participants (N = 61 ranging from three to 19 years of age). RESULTS: Altered synchronization in the brain responses to sound were found in both ID groups. The SYNGAP1 mutations group showed less phase-locking in early time windows and lower frequency bands compared to NT, and in later time windows compared to NT and DS. Time-frequency analysis showed more power in beta-gamma in the SYNGAP1 group compared to NT participants. CONCLUSIONS: This study indicated reduced synchronization as well as more high frequencies power in SYNGAP1 mutations, while maintained synchronization was found in the DS group. These results might reflect dysfunctional sensory information processing caused by excitation/inhibition imbalance, or an imperfect compensatory mechanism in SYNGAP1 mutations individuals. SIGNIFICANCE: Our study is the first to reveal brain response abnormalities in auditory sensory processing in SYNGAP1 mutations individuals, that are distinct from DS, another ID condition.


Asunto(s)
Síndrome de Down/genética , Síndrome de Down/fisiopatología , Potenciales Evocados Auditivos/fisiología , Mutación/genética , Proteínas Activadoras de ras GTPasa/genética , Estimulación Acústica/métodos , Adolescente , Niño , Preescolar , Estudios de Cohortes , Síndrome de Down/diagnóstico , Electroencefalografía/métodos , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Masculino , Adulto Joven
20.
Clin Neurophysiol ; 132(10): 2447-2455, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454272

RESUMEN

OBJECTIVE: The aim was to find a sensitive method to highlight the remodeling of the brain's bioelectric activity in post-stroke repair. METHODS: Fifteen mild upper limb paretic stroke patients and age-matched healthy controls were included. Repeated trials of finger tapping around the 10th and 100th days after stroke onset were recorded with a 128-channel EEG. Power spectra and Inter Trial Coherence (ITC) calculations were synchronized to tappings. ITC was correlated with motor performance. RESULTS: ITC, in low frequency bands, designates the motor related bioelectric activity in channel space in both healthy subjects and patients. Ten days after stroke onset, delta-theta ITC was severely reduced compared to baseline, while three months later ITC reorganized partially over the ipsilesional central-parietal areas reflecting the improvement of motor networks. Decreased ITC in the central-parietal area remained significant compared to controls. Delta band ITC over the dorsolateral-prefrontal cortex correlates with the performance on Nine Hole Peg Test. At post-recovery, non-paretic hand tappings show significantly decreased delta-theta ITC over the supplementary motor area, which reflects network remodeling. CONCLUSIONS: Inter Trial Coherence is a useful measure of brain reorganization during stroke recovery. SIGNIFICANCE: Delta- theta ITC is a sensitive indicator of impaired motor execution.


Asunto(s)
Ondas Encefálicas/fisiología , Paresia/fisiopatología , Corteza Prefrontal/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/fisiopatología , Anciano , Anciano de 80 o más Años , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paresia/diagnóstico , Paresia/etiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA