RESUMEN
The diverse biological activity of interleukin-6 (IL-6) contributes to the maintenance of homeostasis. Emergent infection or tissue injury induces rapid production of IL-6 and activates host defense through augmentation of acute-phase proteins and immune responses. However, excessive IL-6 production and uncontrolled IL-6 receptor signaling are critical to pathogenesis. Over the years, therapeutic agents targeting IL-6 signaling, such as tocilizumab, a humanized anti-IL-6 receptor antibody, have shown remarkable efficacy for rheumatoid arthritis, Castleman disease, and juvenile idiopathic arthritis, and their efficacy in other diseases is continually being reported. Emerging evidence has demonstrated the benefit of tocilizumab for several types of acute inflammatory diseases, including cytokine storms induced by chimeric antigen receptor T cell therapy and coronavirus disease 2019 (COVID-19). Here, we refocus attention on the biology of IL-6 and summarize the distinct pathological roles of IL-6 signaling in several acute and chronic inflammatory diseases.
Asunto(s)
Artritis Reumatoide , COVID-19 , Animales , Artritis Reumatoide/terapia , COVID-19/terapia , Humanos , Inmunoterapia Adoptiva , Interleucina-6/metabolismo , Transducción de SeñalRESUMEN
Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.
Asunto(s)
Histonas , Proteínas Serina-Treonina Quinasas , Humanos , Histonas/genética , Histonas/metabolismo , Acetilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Inflamación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.
Asunto(s)
Anhedonia/fisiología , Cuerpo Estriado/inmunología , Depresión/inmunología , Microglía/inmunología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inflamación , Interleucina-6/metabolismo , Activación de Macrófagos , Ratones , Inflamación Neurogénica , Prostaglandinas/metabolismoRESUMEN
Anti-melanoma differentiation-associated gene 5 (MDA5) antibody-positive dermatomyositis (DM) is characterized by amyopathic DM with interstitial lung disease (ILD). Patients with anti-MDA5 antibody-associated ILD frequently develop rapidly progression and present high mortality rate in the acute phase. Here, we established a murine model of ILD mediated by autoimmunity against MDA5. Mice immunized with recombinant murine MDA5 whole protein, accompanied with complete Freund's adjuvant once a week for four times, developed MDA5-reactive T cells and anti-MDA5 antibodies. After acute lung injury induced by intranasal administration of polyinosinic-polycytidylic acid [poly (I:C)] mimicking viral infection, the MDA5-immunized mice developed fibrotic ILD representing prolonged respiratory inflammation accompanied by fibrotic changes 2 wk after poly (I:C)-administration, while the control mice had quickly and completely recovered from the respiratory inflammation. Treatment with anti-CD4 depleting antibody, but not anti-CD8 depleting antibody, suppressed the severity of MDA5-induced fibrotic ILD. Upregulation of interleukin (IL)-6 mRNA, which was temporarily observed in poly (I:C)-treated mice, was prolonged in MDA5-immunized mice. Treatment with anti-IL-6 receptor antibody ameliorated the MDA5-induced fibrotic ILD. These results suggested that autoimmunity against MDA5 exacerbates toll-like receptor 3-mediated acute lung injury, and prolongs inflammation resulting in the development of fibrotic ILD. IL-6 may play a key role initiating ILD in this model.
Asunto(s)
Lesión Pulmonar Aguda , Dermatomiositis , Enfermedades Pulmonares Intersticiales , Melanoma , Humanos , Animales , Ratones , Dermatomiositis/diagnóstico , Dermatomiositis/complicaciones , Pronóstico , Progresión de la Enfermedad , Autoinmunidad , Helicasa Inducida por Interferón IFIH1/genética , Autoanticuerpos , Enfermedades Pulmonares Intersticiales/diagnóstico , Interleucina-6 , Inflamación/complicaciones , Estudios RetrospectivosRESUMEN
Pulmonary arterial hypertension (PAH) is characterized by stenosis and occlusions of small pulmonary arteries, leading to elevated pulmonary arterial pressure and right heart failure. Although accumulating evidence shows the importance of interleukin (IL)-6 in the pathogenesis of PAH, the target cells of IL-6 are poorly understood. Using mice harboring the floxed allele of gp130, a subunit of the IL-6 receptor, we found substantial Cre recombination in all hematopoietic cell lineages from the primitive hematopoietic stem cell level in SM22α-Cre mice. We also revealed that a CD4+ cell-specific gp130 deletion ameliorated the phenotype of hypoxia-induced pulmonary hypertension in mice. Disruption of IL-6 signaling via deletion of gp130 in CD4+ T cells inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) and suppressed the hypoxia-induced increase in T helper 17 cells. To further examine the role of IL-6/gp130 signaling in more severe PH models, we developed Il6 knockout (KO) rats using the CRISPR/Cas9 system and showed that IL-6 deficiency could improve the pathophysiology in hypoxia-, monocrotaline-, and Sugen5416/hypoxia (SuHx)-induced rat PH models. Phosphorylation of STAT3 in CD4+ cells was also observed around the vascular lesions in the lungs of the SuHx rat model, but not in Il6 KO rats. Blockade of IL-6 signaling had an additive effect on conventional PAH therapeutics, such as endothelin receptor antagonist (macitentan) and soluble guanylyl cyclase stimulator (BAY41-2272). These findings suggest that IL-6/gp130 signaling in CD4+ cells plays a critical role in the pathogenesis of PAH.
Asunto(s)
Hipertensión Pulmonar , Interleucina-6 , Animales , Ratones , Ratas , Linfocitos T CD4-Positivos/patología , Receptor gp130 de Citocinas/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/patología , Interleucina-6/genética , Arteria Pulmonar/patologíaRESUMEN
Fibroblasts are major contributors to and regulators of inflammation and dominant producers of interleukin-6 (IL-6) in inflammatory diseases like rheumatoid arthritis. Yet, compared to leukocytes, the regulation of inflammatory pathways in fibroblasts is largely unknown. Here, we report that analyses of genes coordinately upregulated with IL-6 pointed to STAT4 and leukemia inhibitory factor (LIF) as potentially linked. Gene silencing revealed that STAT4 was required for IL-6 transcription. STAT4 was recruited to the IL-6 promoter after fibroblast activation, and LIF receptor (LIFR) and STAT4 formed a molecular complex that, together with JAK1 and TYK2 kinases, controlled STAT4 activation. Importantly, a positive feedback loop involving autocrine LIF, LIFR, and STAT4 drove sustained IL-6 transcription. Besides IL-6, this autorine loop also drove the production of other key inflammatory factors including IL-8, granulocyte-colony stimulating factor (G-CSF), IL-33, IL-11, IL-1α, and IL-1ß. These findings define the transcriptional regulation of fibroblast-mediated inflammation as distinct from leukocytes.
Asunto(s)
Comunicación Autocrina/inmunología , Fibroblastos/inmunología , Regulación de la Expresión Génica/inmunología , Factor Inhibidor de Leucemia/inmunología , Receptores OSM-LIF/inmunología , Artritis Reumatoide/inmunología , Células Cultivadas , Citocinas/biosíntesis , Perfilación de la Expresión Génica , Humanos , Inflamación/inmunología , Interleucina-6/inmunología , Factor de Transcripción STAT4/inmunología , Membrana Sinovial/inmunología , TranscriptomaRESUMEN
Fibrosis is regulated by interactions between immune and mesenchymal cells. However, the capacity of cell types to modulate human fibrosis pathology is poorly understood due to lack of a fully humanized model system. MISTRG6 mice were engineered by homologous mouse/human gene replacement to develop an immune system like humans when engrafted with human hematopoietic stem cells (HSCs). We utilized MISTRG6 mice to model scleroderma by transplantation of healthy or scleroderma skin from a patient with pansclerotic morphea to humanized mice engrafted with unmatched allogeneic HSC. We identified that scleroderma skin grafts contained both skin and bone marrow-derived human CD4 and CD8 T cells along with human endothelial cells and pericytes. Unlike healthy skin, fibroblasts in scleroderma skin were depleted and replaced by mouse fibroblasts. Furthermore, HSC engraftment alleviated multiple signatures of fibrosis, including expression of collagen and interferon genes, and proliferation and activation of human T cells. Fibrosis improvement correlated with reduced markers of T cell activation and expression of human IL-6 by mesenchymal cells. Mechanistic studies supported a model whereby IL-6 trans-signaling driven by CD4 T cell-derived soluble IL-6 receptor complexed with fibroblast-derived IL-6 promoted excess extracellular matrix gene expression. Thus, MISTRG6 mice transplanted with scleroderma skin demonstrated multiple fibrotic responses centered around human IL-6 signaling, which was improved by the presence of healthy bone marrow-derived immune cells. Our results highlight the importance of IL-6 trans-signaling in pathogenesis of scleroderma and the ability of healthy bone marrow-derived immune cells to mitigate disease.
Asunto(s)
Basidiomycota , Esclerodermia Localizada , Humanos , Animales , Ratones , Interleucina-6 , Células Endoteliales , Piel , Modelos Animales de EnfermedadRESUMEN
α1,6-Fucosyltransferase (Fut8) catalyzes the transfer of fucose to the innermost GlcNAc residue of N-glycan to form core fucosylation. Our previous studies showed that lipopolysaccharide (LPS) treatment highly induced neuroinflammation in Fut8 homozygous KO (Fut8-/-) or heterozygous KO (Fut8+/-) mice, compared with the WT (Fut8+/+) mice. To understand the underlying mechanism, we utilized a sensitive inflammation-monitoring mouse system that contains the human interleukin-6 (hIL6) bacterial artificial chromosome transgene modified with luciferase (Luc) reporter cassette. We successfully detected LPS-induced neuroinflammation in the central nervous system by exploiting this bacterial artificial chromosome transgenic monitoring system. Then we examined the effects of l-fucose on neuroinflammation in the Fut8+/- mice. The lectin blot and mass spectrometry analysis showed that l-fucose preadministration increased the core fucosylation levels in the Fut8+/- mice. Notably, exogenous l-fucose attenuated the LPS-induced IL-6 mRNA and Luc mRNA expression in the cerebral tissues, confirmed using the hIL6-Luc bioluminescence imaging system. The activation of microglial cells, which provoke neuroinflammatory responses upon LPS stimulation, was inhibited by l-fucose preadministration. l-Fucose also suppressed the downstream intracellular signaling of IL-6, such as the phosphorylation levels of JAK2 (Janus kinase 2), Akt (protein kinase B), and STAT3 (signal transducer and activator of transcription 3). l-Fucose administration increased gp130 core fucosylation levels and decreased the association of gp130 with the IL-6 receptor in Fut8+/- mice, which was further confirmed in BV-2 cells. These results indicate that l-fucose administration ameliorates the LPS-induced neuroinflammation in the Fut8+/- mice, suggesting that core fucosylation plays a vital role in anti-inflammation and that l-fucose is a potential prophylactic compound against neuroinflammation.
Asunto(s)
Fucosa , Inflamación , Lipopolisacáridos , Animales , Humanos , Ratones , Receptor gp130 de Citocinas , Fucosa/farmacología , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/genética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias , ARN MensajeroRESUMEN
Iron is an essential element for proper cell functioning, but unbalanced levels can cause cell death. Iron metabolism is controlled at the blood-tissue barriers provided by microvascular endothelial cells. Dysregulated iron metabolism at these barriers is a factor in both neurodegenerative and cardiovascular diseases. Mammalian iron efflux is mediated by the iron efflux transporter ferroportin (Fpn). Inflammation is a factor in many diseases and correlates with increased tissue iron accumulation. Evidence suggests treatment with interleukin 6 (IL-6) increases intracellular calcium levels and calcium is known to play an important role in protein trafficking. We have shown that calcium increases plasma membrane localization of the iron uptake proteins ZIP8 and ZIP14, but if and how calcium modulates Fpn trafficking is unknown. In this article, we examined the effects of IL-6 and calcium on Fpn localization to the plasma membrane. In HEK cells expressing a doxycycline-inducible GFP-tagged Fpn, calcium increased Fpn-GFP membrane presence by 2 h, while IL-6 increased membrane-localized Fpn-GFP by 3 h. Calcium pretreatment increased Fpn-GFP mediated 55Fe efflux from cells. Endoplasmic reticulum calcium stores were shown to be important for Fpn-GFP localization and iron efflux. Use of calmodulin pathway inhibitors showed that calcium signaling is important for IL-6-induced Fpn relocalization. Studies in brain microvascular endothelial cells in transwell culture demonstrated an initial increase in 55Fe flux with IL-6 that is reduced by 6 h coinciding with upregulation of hepcidin. Overall, this research details one pathway by which inflammatory signaling mediated by calcium can regulate iron metabolism, likely contributing to inflammatory disease mechanisms.
Asunto(s)
Calcio , Proteínas de Transporte de Catión , Membrana Celular , Interleucina-6 , Hierro , Transporte de Proteínas , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Hierro/metabolismo , Membrana Celular/metabolismo , Calcio/metabolismo , Células HEK293 , Animales , Células Endoteliales/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genéticaRESUMEN
Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as ß-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.
Asunto(s)
Antígenos de Grupos Sanguíneos , Galectina 4 , Galectinas , Leche Humana , Oligosacáridos , Humanos , Leche Humana/metabolismo , Leche Humana/química , Oligosacáridos/metabolismo , Oligosacáridos/química , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/química , Galectinas/metabolismo , Galectinas/química , Ligandos , Galectina 4/metabolismo , Galectina 4/química , Unión Proteica , Interleucina-6/metabolismoRESUMEN
BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.
Asunto(s)
Aterosclerosis , Quimiocina CXCL10 , Interleucina-6 , Proteogenómica , Humanos , Aterosclerosis/genética , Quimiocina CXCL10/metabolismo , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Interleucina-6/metabolismo , Análisis de la Aleatorización Mendeliana , Enfermedad Arterial Periférica , Proteómica , Accidente Cerebrovascular/genéticaRESUMEN
BACKGROUND: Heart failure is associated with a high rate of mortality and morbidity, and ventricular remodeling invariably precedes heart failure. Ventricular remodeling is fundamentally driven by mechanotransduction that is regulated by both the nervous system and the immune system. However, it remains unknown which key molecular factors govern the neuro/immune/cardio axis that underlies mechanotransduction during ventricular remodeling. Here, we investigated whether the mechanosensitive Piezo cation channel-mediated neurogenic inflammatory cascade underlies ventricular remodeling-related mechanotransduction. METHODS: By ligating the left coronary artery of rats to establish an in vivo model of chronic myocardial infarction (MI), lentivirus-mediated thoracic dorsal root ganglion (TDRG)-specific Piezo1 knockdown rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific Piezo1 knockout mice were used to investigate whether Piezo1 in the TDRG plays a functional role during ventricular remodeling. Subsequently, neutralizing antibody-mediated TDRG IL-6 (interleukin-6) inhibition rats and adeno-associated virus-PHP.S-mediated TDRG neuron-specific IL-6 knockdown mice were used to determine the mechanism underlying neurogenic inflammation. Primary TDRG neurons were used to evaluate Piezo1 function in vitro. RESULTS: Expression of Piezo1 and IL-6 was increased, and these factors were functionally activated in TDRG neurons at 4 weeks after MI. Both knockdown of TDRG-specific Piezo1 and deletion of TDRG neuron-specific Piezo1 lessened the severity of ventricular remodeling at 4 weeks after MI and decreased the level of IL-6 in the TDRG or heart. Furthermore, inhibition of TDRG IL-6 or knockdown of TDRG neuron-specific IL-6 also ameliorated ventricular remodeling and suppressed the IL-6 cascade in the heart, whereas the Piezo1 level in the TDRG was not affected. In addition, enhanced Piezo1 function, as reflected by abundant calcium influx induced by Yoda1 (a selective agonist of Piezo1), led to increased release of IL-6 from TDRG neurons in mice 4 weeks after MI. CONCLUSIONS: Our findings point to a critical role for Piezo1 in ventricular remodeling at 4 weeks after MI and reveal a neurogenic inflammatory cascade as a previously unknown facet of the neuronal immune signaling axis underlying mechanotransduction.
Asunto(s)
Inflamación , Canales Iónicos , Infarto del Miocardio , Remodelación Ventricular , Animales , Masculino , Ratones , Ratas , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Canales Iónicos/metabolismo , Canales Iónicos/genética , Mecanotransducción Celular , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Remodelación Ventricular/genética , Remodelación Ventricular/fisiologíaRESUMEN
BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology. MATERIALS AND METHODS: We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC. RESULTS: The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence. CONCLUSION: Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.
Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Trasplante de Hígado , Recurrencia Local de Neoplasia , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Trasplante de Hígado/efectos adversos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Regulación Neoplásica de la Expresión Génica/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Transducción de Señal/genética , Redes Reguladoras de Genes/genética , Mapas de Interacción de Proteínas/genética , Masculino , Femenino , Biomarcadores de Tumor/genética , Persona de Mediana EdadRESUMEN
Advances in the digital pathology field have facilitated the characterization of histology samples for both clinical and preclinical research. However, uncovering subtle correlations between bioimaging, clinical and molecular parameters requires extensive statistical analysis. As a user-friendly software, Hourglass, simplifies multiparametric dataset analysis through intuitive data visualization and statistical tools. Systemic analysis of interleukin-6 (IL-6)/pStat3 signaling pathway through Hourglass revealed differences in regional immune cell composition within tumors. Moreover, these regional disparities were partially mediated by sex. Overall, Hourglass simplifies information extraction from complex datasets, resolving overlooked regional and global spatial tumor differences. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Transducción de Señal , Programas Informáticos , Reino UnidoRESUMEN
BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is a severe disease involving dysregulated type 2 inflammation. However, the role other inflammatory pathways play in AERD is poorly understood. OBJECTIVE: We sought to broadly define the inflammatory milieu of the upper respiratory tract in AERD and to determine the effects of IL-4Rα inhibition on mediators of nasal inflammation. METHODS: Twenty-two AERD patients treated with dupilumab for 3 months were followed over 3 visits and compared to 10 healthy controls. Nasal fluid was assessed for 45 cytokines and chemokines using Olink Target 48. Blood neutrophils and cultured human mast cells, monocytes/macrophages, and nasal fibroblasts were assessed for response to IL-4/13 stimulation in vitro. RESULTS: Of the nasal fluid cytokines measured, nearly one third were higher in AERD patients compared to healthy controls, including IL-6 and the IL-6 family-related cytokine oncostatin M (OSM), both of which correlated with nasal albumin levels, a marker of epithelial barrier dysregulation. Dupilumab significantly decreased many nasal mediators, including OSM and IL-6. IL-4 stimulation induced OSM production from mast cells and macrophages but not from neutrophils, and OSM and IL-13 stimulation induced IL-6 production from nasal fibroblasts. CONCLUSION: In addition to type 2 inflammation, innate and IL-6-related cytokines are also elevated in the respiratory tract in AERD. Both OSM and IL-6 are locally produced in nasal polyps and likely promote pathology by negatively affecting epithelial barrier function. IL-4Rα blockade, although seemingly directed at type 2 inflammation, also decreases mediators of innate inflammation and epithelial dysregulation, which may contribute to dupilumab's therapeutic efficacy in AERD.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Asma Inducida por Aspirina , Subunidad alfa del Receptor de Interleucina-4 , Interleucina-6 , Oncostatina M , Transducción de Señal , Humanos , Oncostatina M/metabolismo , Femenino , Masculino , Persona de Mediana Edad , Interleucina-6/metabolismo , Interleucina-6/inmunología , Adulto , Subunidad alfa del Receptor de Interleucina-4/metabolismo , Subunidad alfa del Receptor de Interleucina-4/inmunología , Asma Inducida por Aspirina/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Células Cultivadas , Anciano , Fibroblastos/metabolismo , Fibroblastos/inmunología , Mucosa Nasal/inmunología , Mucosa Nasal/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismoRESUMEN
BACKGROUND: Identification of proinflammatory factors responding to Mycobacterium tuberculosis is important to reduce long-term sequelae of pulmonary tuberculosis (TB). METHODS: We examined the association between plasma biomarkers, the fraction of exhaled nitric oxide (FeNO), and lung function among a prospective cohort of 105 adults newly diagnosed with TB/human immunodeficiency virus (HIV) in South Africa. Participants were followed for 48 weeks from antiretroviral therapy (ART) initiation with serial assessments of plasma biomarkers, FeNO, lung function, and respiratory symptoms. Linear regression and generalized estimating equations were used to examine the associations at baseline and over the course of TB treatment, respectively. RESULTS: At baseline, higher FeNO levels were associated with preserved lung function, whereas greater respiratory symptoms and higher interleukin (IL)-6 plasma levels were associated with worse lung function. After ART and TB treatment initiation, improvements in lung function were associated with increases in FeNO (rate ratio [RR] = 86 mL, 95% confidence interval [CI] = 34-139) and decreases in IL-6 (RR = -118 mL, 95% CI = -193 to -43) and vascular endothelial growth factor ([VEGF] RR = -178 mL, 95% CI = -314 to -43). CONCLUSIONS: Circulating IL-6, VEGF, and FeNO are associated with lung function in adults being treated for TB/HIV. These biomarkers may help identify individuals at higher risk for post-TB lung disease and elucidate targetable pathways to modify the risk of chronic lung impairment among TB survivors.
Asunto(s)
Infecciones por VIH , Tuberculosis , Adulto , Humanos , Óxido Nítrico/metabolismo , Factor A de Crecimiento Endotelial Vascular , VIH , Interleucina-6 , Estudios Prospectivos , Tuberculosis/tratamiento farmacológico , Tuberculosis/complicaciones , Biomarcadores/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Pulmón/metabolismoRESUMEN
BACKGROUND: By acting as an environmental sensor, the ligand-induced transcription factor aryl hydrocarbon receptor (AhR) regulates acute innate and adaptive immune responses against pathogens. Here, we analyzed the function of AhR in a model for chronic systemic infection with attenuated Salmonella Typhimurium (STM). METHODS: WT and AhR-deficient mice were infected with the attenuated STM strain TAS2010 and analyzed for bacterial burden, host defense functions and inflammatory stress erythropoiesis. RESULTS: AhR-deficient mice were highly susceptible to TAS2010 infection compared with WT mice demonstrated by reduced bacterial clearance and increased mortality. STM infection resulted in macrocytic anemia and enhanced splenomegaly along with destruction of the splenic architecture in AhR-deficient mice. In addition, AhR-deficient mice displayed a major expansion of splenic immature red blood cells, indicative of infection-induced stress erythropoiesis. Elevated serum levels of erythropoietin and interleukin-6 upon infection as well as increased numbers of splenic stress erythroid progenitors already in steady state probably drive this effect and might cause the alterations in splenic immune cell compartments, thereby preventing an effective host defense against STM in AhR-deficient mice. CONCLUSIONS: AhR-deficient mice fail to clear chronic TAS2010 infection due to enhanced stress erythropoiesis in the spleen and accompanying destruction of the splenic architecture.
RESUMEN
Plasma lipid levels are modulated by systemic infection and inflammation; it is unknown whether these changes reflect inflammatory responses or caused directly by pathogen presence. We explored the hypothesis that anti-inflammatory intervention via interleukin 6 receptor (IL-6R) blockade would influence plasma lipid levels during severe infection and evaluated the association of plasma lipid changes with clinical outcomes. Sarilumab (monoclonal antibody blocking IL-6R) efficacy was previously assessed in patients with coronavirus disease 2019 (COVID-19) (NCT04315298). This analysis determined whether strong inflammatory reduction by sarilumab in patients with COVID-19 pneumonia of increasing severity (severe, critical, multisystem organ dysfunction) affected plasma lipid changes between day 1 and day 7 of study therapy. Baseline lipid levels reflected the presence of acute systemic infection, characterized by very low HDL-C, low LDL-C, and moderately elevated triglycerides (TGs). Disease severity was associated with progressively more abnormal lipid levels. At day 7, median lipid levels increased more in the sarilumab versus placebo group (HDL-C +10.3%, LDL-C +54.7%, TG +32% vs. HDL-C +1.7%, LDL-C +15.4%, TG +8.8%, respectively). No significant association between lipid changes and clinical outcomes was observed. In conclusion, severe-to-critical COVID-19 pneumonia causes profound HDL-C depression that is only modestly responsive to strong anti-IL-6R inflammatory intervention. Conversely, LDL-C depression is strongly responsive to IL-6R blockade, with LDL-C levels likely returning to the predisease set point. These results advance our understanding of the complex relationship between serum lipids and infection/inflammation and suggest that HDL-C depression during acute contagious disease is driven by infection and not IL-6-mediated inflammation.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Tratamiento Farmacológico de COVID-19 , COVID-19 , Lípidos , Receptores de Interleucina-6 , Humanos , Receptores de Interleucina-6/antagonistas & inhibidores , Receptores de Interleucina-6/sangre , Anticuerpos Monoclonales Humanizados/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , COVID-19/sangre , COVID-19/complicaciones , Lípidos/sangre , Anciano , Hospitalización , Resultado del Tratamiento , SARS-CoV-2 , Adulto , Índice de Severidad de la EnfermedadRESUMEN
Circulating proteomes provide a snapshot of the physiological state of a human organism responding to pathogenic challenges and drug interventions. The outcomes of patients with COVID-19 and acute respiratory distress syndrome triggered by the SARS-CoV2 virus remain uncertain. Tocilizumab is an anti-interleukin-6 treatment that exerts encouraging clinical activity by controlling the cytokine storm and improving respiratory distress in patients with COVID-19. We investigate the biological determinants of therapeutic outcomes after tocilizumab treatment. Overall, 28 patients hospitalized due to severe COVID-19 who were treated with tocilizumab intravenously were included in this study. Sera were collected before and after tocilizumab, and the patient's outcome was evaluated until day 30 post-tocilizumab infusion for favorable therapeutic response to tocilizumab and mortality. Hyperreaction monitoring measurements by liquid chromatography-mass spectrometry-based proteomic analysis with data-independent acquisition quantified 510 proteins and 7019 peptides in the serum of patients. Alterations in the serum proteome reflect COVID-19 outcomes in patients treated with tocilizumab. Our results suggested that circulating proteins associated with the most significant prognostic impact belonged to the complement system, platelet degranulation, acute-phase proteins, and the Fc-epsilon receptor signaling pathway. Among these, upregulation of the complement system by activation of the classical pathway was associated with poor response to tocilizumab, and upregulation of Fc-epsilon receptor signaling was associated with lower mortality.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Tratamiento Farmacológico de COVID-19 , COVID-19 , Receptores de Interleucina-6 , SARS-CoV-2 , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Masculino , Femenino , COVID-19/sangre , COVID-19/mortalidad , COVID-19/virología , Receptores de Interleucina-6/sangre , Receptores de Interleucina-6/antagonistas & inhibidores , Persona de Mediana Edad , Anciano , SARS-CoV-2/fisiología , Proteómica/métodos , Proteoma/análisis , Cromatografía Liquida/métodos , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Anciano de 80 o más Años , Interleucina-6/sangreRESUMEN
Chronic inflammation is believed as the main culprit of the link between cardiovascular disease (CVD) and rheumatoid arthritis (RA). Interleukin-6 (IL-6) is a pro-inflammatory cytokine with a key role in RA pathophysiology and also correlates with joint destruction and disease activity. This study evaluates the association between IL-6 plasma level and cardiac biomarker NT-proBNP, HS-CRP, CVD predictor algorithms, Framingham Risk Score (FRS) and Systematic Coronary Risk Evaluation (SCORE), as well as with CXCL9 and its receptor, CXCR3 in RA patients compared to the controls. Sixty RA patients (30 early and 30 late) and 30 healthy persons were included in this study. IL-6 and NT-proBNP plasma levels were measured by the ELISA. Also, HS-CRP plasma levels were quantified using the immunoturbidimetric assay. The CVD risk was assessed by the FRS and SCORE. IL-6 plasma levels were significantly higher in the early and late RA patients compared to the controls (p < 0.001). There was a positive correlation between IL-6 with DAS-28 (p = 0.007, r = 0.346), BPS (p = 0.002, r = 0.396), BPD (p = 0.046, r = 0.259), SCORE (p < 0.001, r = 0.472), and FRS (p < 0.001, r = 0.553), and a negative association with HDL (p = 0.037, r = -0.270), in the patients. Also, IL-6 plasma level positively correlated with HS-CRP (p = 0.021, r = 0.297) and NT-proBNP (p = 0.045, r = 0.260) in the patients. Furthermore, a positive association was found between IL-6 plasma levels and CXCL9 (p = 0.002, r = 0.386), and CXCR3 (p = 0.018, r = 0.304) in the patients. Given the interesting association between IL-6 with various variables of CVD, IL-6 may be considered a biomarker for assessing the risk for future cardiovascular events in RA patients.