Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Sci Food Agric ; 104(3): 1723-1731, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37851602

RESUMEN

BACKGROUND: In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS: Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION: Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.


Asunto(s)
Antiulcerosos , Úlcera Gástrica , Ratones , Animales , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Antioxidantes/metabolismo , Ácido Clorhídrico , Úlcera/tratamiento farmacológico , Úlcera/metabolismo , Antiulcerosos/metabolismo , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Etanol/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Extractos Vegetales/metabolismo , Aminoácidos/metabolismo , Mucosa Gástrica/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894983

RESUMEN

Antithrombin III is an important anticoagulant factor with anti-inflammatory properties. However, few studies have explored its anti-inflammatory actions in ATIII overexpressed transgenic animals. In this study, the dairy goats with mammary overexpression of ATIII were used to investigate their general health, milk quality and particularly their response to inflammatory challenge. The results showed that transgenic goats have a normal phenotype regarding their physiological and biochemical parameters, including whole blood cells, serum protein levels, total cholesterol, urea nitrogen, uric acid, and total bilirubin, compared to the WT. In addition, the quality of milk also improved in transgenic animals compared to the WT, as indicated by the increased milk fat and dry matter content and the reduced somatic cell numbers. Under the stimulation of an LPS injection, the transgenic goats had elevated contents of IGA, IGM and superoxide dismutase SOD, and had reduced proinflammatory cytokine release, including IL-6, TNF-α and IFN-ß. A 16S rDNA sequencing analysis also showed that the transgenic animals had a similar compositions of gut microbiota to the WT goats under the stimulation of LPS injections. Mammary gland ATIII overexpression in dairy goats is a safe process, and it did not jeopardize the general health of the transgenic animals; moreover, the compositions of their gut microbiota also improved with the milk quality. The LPS stimulation study suggests that the increased ATIII expression may directly or indirectly suppress the inflammatory response to increase the resistance of transgenic animals to pathogen invasion. This will be explored in future studies.


Asunto(s)
Antitrombina III , Lipopolisacáridos , Animales , Femenino , Lipopolisacáridos/farmacología , Antitrombina III/metabolismo , Leche/química , Animales Modificados Genéticamente , Anticoagulantes/farmacología , Cabras/genética , Estado de Salud , Glándulas Mamarias Animales/metabolismo , Lactancia
3.
Zhonghua Gan Zang Bing Za Zhi ; 29(5): 493-496, 2021 May 20.
Artículo en Zh | MEDLINE | ID: mdl-34107593

RESUMEN

Cholangiocarcinoma is a kind of malignant tumor that originates from the bile duct epithelium. Due to its insidious nature, there is no effective early diagnosis and treatment method. Therefore, once it is detected, it is at an advanced stage and has a poor prognosis. Bile acid is the main component of bile, which acts on cholangiocytes through bile acid receptors and plays a key role in the development of cholangiocarcinoma. Gut microbiota can participate in the occurrence of cholangiocarcinoma by regulating bile acid metabolism. This review mainly focuses on the role of bile acid and bile acid receptors in the occurrence and development of cholangiocarcinoma and the impact of gut microbiota in it.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Microbioma Gastrointestinal , Ácidos y Sales Biliares , Conductos Biliares Intrahepáticos , Humanos
4.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5884-5889, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496128

RESUMEN

Protoberberine alkaloids belong to the quaternary ammonium isoquinoline alkaloids, and are the main active ingredients in traditional Chinese herbal medicines, like Coptis chinensis. They have been widely used to treat such diseases as gastroenteritis, intestinal infections, and conjunctivitis. Studies have shown that structural modification of the protoberberine alkaloids could produce derivative compounds with new pharmacological effects and biological activities, but the transformation mechanism is not clear yet. This article mainly summarizes the researches on the biotransformation and structure modification of protoberberine alkaloids mainly based on berberine, so as to provide background basis and new ideas for studies relating to the mechanism of protoberberine alkaloids and the pharmacological activity and application of new compounds.


Asunto(s)
Alcaloides , Alcaloides de Berberina , Berberina , Coptis , Biotransformación
6.
J Ethnopharmacol ; 325: 117776, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38307354

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Honeysuckle, first documented in the Miscellaneous Records of Famous Physicians, is known for its ability to expel toxin and cool blood to stop diarrhea. Modern pharmacological research has shown that honeysuckle has anti-inflammatory, antibacterial, antioxidant, and immune-regulating effects and is widely used in clinical practice. However, the effect of honeysuckle on ulcerative colitis (UC) is still not fully understood, which presents challenges for quality control, research and development. AIM OF THE STUDY: This study aimed to determine the anti-inflammatory properties and mechanism of action of aqueous extracts of honeysuckle in the treatment of ulcerative colitis. MATERIALS AND METHODS: The dextran sodium sulfate (DSS) induced-ulcerative colitis mouse model was established, and the mice were divided into five groups: the control group, the model group, and the low, medium, and high dose honeysuckle treatment groups. RESULTS: All dose groups of honeysuckle were found to significantly reduce IL-6 and TNF-α levels and regulate DSS-induced mRNA levels of CLDN4, COX-2, IL-6, INOS, MUC-2, occludin and NLRP3. The high-dose group displayed the most effective inhibition, and a differentially expressed mRNA detection indicated abnormal mRNA expression. The 16sRNA sequencing revealed that the honeysuckle was able to significantly upregulate the abundance of beneficial bacteria and downregulate the abundance of harmful bacteria. The study of short-chain fatty acids revealed that the levels of acetic, propionic, isobutyric, valeric and isovaleric acids were significantly increased after administering honeysuckle at medium and high doses. CONCLUSION: Honeysuckle reduces the production of pro-inflammatory cytokines, increases the content of short-chain fatty acids and restores the intestinal ecological balance, resulting in better therapeutic effects.


Asunto(s)
Colitis Ulcerosa , Colitis , Lonicera , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colon , Interleucina-6/genética , Interleucina-6/metabolismo , Antiinflamatorios/efectos adversos , ARN Mensajero/metabolismo , Ácidos Grasos Volátiles/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis/tratamiento farmacológico
7.
Aquat Toxicol ; 268: 106844, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295602

RESUMEN

In recent years, excessive discharge of pollutants has led to increasing concentrations of cadmium (Cd) and diclofenac (DCF) in water; however, the toxicity mechanism of combined exposure of the two pollutants to aquatic animals has not been fully studied. Procambarus clarkii is an economically important aquatic species that is easily affected by Cd and DCF. This study examined the effects of combined exposure to Cd and DCF on the tissue accumulation, physiology, biochemistry, and gut microflora of P. clarkii. The results showed that Cd and DCF accumulated in tissues in the order of hepatopancreas > gill > intestine > muscle. The hepatopancreas and intestines were subjected to severe oxidative stress, with significantly increased antioxidant enzyme activity. Pathological examination revealed lumen expansion and epithelial vacuolisation in the hepatopancreas and damage to the villous capillaries and wall in the intestine. The co-exposure to Cadmium (Cd) and Diclofenac (DCF) disrupts the Firmicutes/Bacteroidetes (F/B) ratio, impairing the regular functioning of intestinal microbiota in carbon (C) and nitrogen (N) cycling. This disturbance consequently hinders the absorption and utilization of energy and nutrients in Procambarus clarkii. This study offers critical insights into the toxicological mechanisms underlying the combined effects of Cd and DCF, and suggests potential approaches to alleviate their adverse impacts on aquatic ecosystems.


Asunto(s)
Contaminantes Ambientales , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Antioxidantes/farmacología , Diclofenaco/toxicidad , Astacoidea , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo , Agua Dulce , Contaminantes Ambientales/farmacología
8.
Sci Total Environ ; 916: 170011, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220005

RESUMEN

Plastic products and nutrients are widely used in aquaculture facilities, resulting in copresence of nanoplastics (NPs) released from plastics and microcystins (MCs) from toxic cyanobacteria. The potential effects of NPs-MCs coexposure on aquatic products require investigation. This study investigated the toxic effects of polystyrene (PS) NPs and MC-LR on the gut-liver axis of silver carp Hypophthalmichthys molitrix, a representative commercial fish, and explored the effects of the coexposure on intestinal microorganism structure and liver metabolic function using traditional toxicology and multi-omics association analysis. The results showed that the PS-NPs and MC-LR coexposure significantly shortened villi length, and the higher the concentration of PS-NPs, the more obvious the villi shortening. The coexposure of high concentrations of PS-NPs and MC-LR increased the hepatocyte space in fish, and caused obvious loss of gill filaments. The diversity and richness of the fish gut microbes significantly increased after the PS-NPs exposure, and this trend was amplified in the copresence of MC-LR. In the coexposure, MC-LR contributed more to the alteration of fish liver metabolism, which affected the enrichment pathway in glycerophospholipid metabolism and folic acid biosynthesis, and there was a correlation between the differential glycerophospholipid metabolites and affected bacteria. These results suggested that the toxic mechanism of PS-NPs and MC-LR coexposure may be pathological changes of the liver, gut, and gill tissues, intestinal microbiota disturbance, and glycerophospholipid metabolism imbalance. The findings not only improve the understanding of environmental risks of NPs combined with other pollutants, but also provide potential microbiota and glycerophospholipid biomarkers in silver carp.


Asunto(s)
Carpas , Cianobacterias , Toxinas Marinas , Animales , Carpas/metabolismo , Microcistinas/análisis , Microplásticos/metabolismo , Hígado/química , Cianobacterias/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/farmacología
9.
J Hazard Mater ; 469: 134098, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522198

RESUMEN

To investigate the efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders, in this study, a mice model of metabolic disorders induced by BPA was developed to investigate the efficacy and mechanism of EGCG using microbiomes and metabolomics. The results showed that EGCG reduced body weight, liver weight ratio, and triglyceride and total cholesterol levels in mice by decreasing the mRNA expression of genes related to fatty acid synthesis (Elov16) and cholesterol synthesis (CYP4A14) and increasing the mRNA expression of genes related to fatty acid oxidation (Lss) and cholesterol metabolism (Cyp7a1). In addition, EGCG normalized BPA-induced intestinal microbial dysbiosis. Metabolic pathway analysis showed that low-dose EGCG was more effective than high-dose EGCG at affecting the biosynthesis of L-cysteine, glycerophosphorylcholine, and palmitoleic acid. These results provide specific data and a theoretical basis for the risk assessment of BPA and the utilization of EGCG.


Asunto(s)
Compuestos de Bencidrilo , Catequina/análogos & derivados , Enfermedades Metabólicas , Fenoles , Ratones , Animales , Colesterol , ARN Mensajero , Ácidos Grasos
10.
Poult Sci ; 103(11): 104225, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39217666

RESUMEN

This study was conducted to explore effects of Lonicerae flos and Rhomoma curcumae longae extracts (LR) on intestinal function of broilers. Three hundred broiler chickens were randomly assigned to the following 5 groups. The control group were fed the basal diet; the antibiotic group were fed the basal diet supplemented with spectinomycin hydrochloride (50 million units/ton) + lincomycin hydrochloride (25 g/ton); the LRH, LRM and LRL groups were fed the basal diet supplemented with a high dose (750 g/ton of feed), normal dose (500 g/ton of feed), or low dose (250 g/ton of feed) of LR, respectively. The changes of intestinal structure, intestinal digestive enzyme activities, antioxidant enzyme activities, inflammatory cytokines, and bacterial abundances in the colon and cecum contents were determined. The results indicated that compared with the control group and the antibiotic group, LR significantly increased the villus length/crypt depth (VCR) of the intestine, and significantly inhibited oxidative stress and inflammatory responses in the broiler intestine. In addition, LR regulated intestinal function by increasing the abundance of the intestinal microorganisms in broilers. In conclusion, LR improved antioxidant capacity, intestinal morphology, and microorganisms, and inhibited inflammatory response. The effect of high and medium doses of LR was better than lower doses.

11.
Foods ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38338616

RESUMEN

The influence of polysialic acid (PSA) and sialic acid (SA) on the gut microbial community composition and metabolites in healthy humans was investigated using a bionic gastrointestinal reactor. The results indicated that PSA and SA significantly changed the gut microbiota and metabolites to different degrees. PSA can increase the relative abundances of Faecalibacterium and Allisonella, whereas SA can increase those of Bifidobacterium and Megamonas. Both can significantly increase the content of short-chain fatty acids. The results of metabolome analysis showed that PSA can upregulate ergosterol peroxide and gallic acid and downregulate the harmful metabolite N-acetylputrescine. SA can upregulate 4-pyridoxic acid and lipoic acid. PSA and SA affect gut microbiota and metabolites in different ways and have positive effects on human health. These results will provide a reference for the further development of PSA- and SA-related functional foods and health products.

12.
Sci Total Environ ; 912: 169579, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145667

RESUMEN

The study investigated the influence of varied moisture levels in pig manure on the gut microbiome of black soldier fly larvae (BSFL) and their waste conversion efficiency. This encompassed alterations in nutrient components of both BSFL and pig manure, diversity and characterization of the BSFL gut microbiota, and the reciprocal effects between the BSFL gut microbiota and their growth performance and nutrient composition. Additionally, the investigation delved into the changes in the bacterial community and the presence of potential pathogenic bacteria in pig manure. An initial mixture of fresh pig manure and wheat bran was prepared with a 60 % moisture content (Group A). Distilled water was subsequently added to adjust the moisture levels, resulting in mixtures with 65 % (Group B), 70 % (Group C), and 75 % (Group D) moisture content. Each group underwent BSFL digestion over ten days. Groups C (3.87 ± 0.05 mg/worm) and D (3.97 ± 0.08 mg/worm) showed significantly higher bioconversion efficiencies and enhanced BSFL growth compared to Groups A (2.66 ± 0.21 mg/worm) and B (3.09 ± 0.09 mg/worm) (P < 0.05). A 75 % moisture level was identified as ideal, positively influencing fecal conversion efficiency (FCE) (9.57 ± 0.14 %), crude fat intake (8.92 ± 0.56 %), protein (46.60 ± 0.54 %), and total phosphorus (1.37 ± 0.08 %) from pig manure, and subsequent nutrient accumulation in BSFLs. A decline in larval crude ash content indicated higher organic matter and an increased pig manure conversion rate with elevated moisture. High-throughput sequencing and diversity analyses confirmed different moisture contents influenced the BSFL gut microbiota. Bacteroidetes (32.7-62.0 %), Proteobacteria (6.8-29.3 %), Firmicutes (5.8-23.4 %), and Actinobacteria (1.9-29.0 %) were predominant phyla. A 75 % moisture content significantly impacted the BSFL biomass conversion and growth performance. Additionally, Larval feces met non-hazardous fertilizer standards, according to NY-525 (2012).


Asunto(s)
Dípteros , Microbioma Gastrointestinal , Animales , Porcinos , Larva , Estiércol , Heces , Bacterias
13.
Front Microbiol ; 15: 1301073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440147

RESUMEN

Introduction: Gut microbes form complex networks that significantly influence host health and disease treatment. Interventions with the probiotic bacteria on the gut microbiota have been demonstrated to improve host well-being. As a representative of next-generation probiotics, Christensenella minuta (C. minuta) plays a critical role in regulating energy balance and metabolic homeostasis in human bodies, showing potential in treating metabolic disorders and reducing inflammation. However, interactions of C. minuta with the members of the networked gut microbiota have rarely been explored. Methods: In this study, we investigated the impact of C. minuta on fecal microbiota via metagenomic sequencing, focusing on retrieving bacterial strains and coculture assays of C. minuta with associated microbial partners. Results: Our results showed that C. minuta intervention significantly reduced the diversity of fecal microorganisms, but specifically enhanced some groups of bacteria, such as Lactobacillaceae. C. minuta selectively enriched bacterial pathways that compensated for its metabolic defects on vitamin B1, B12, serine, and glutamate synthesis. Meanwhile, C. minuta cross-feeds Faecalibacterium prausnitzii and other bacteria via the production of arginine, branched-chain amino acids, fumaric acids and short-chain fatty acids (SCFAs), such as acetic. Both metagenomic data analysis and culture experiments revealed that C. minuta negatively correlated with Klebsiella pneumoniae and 14 other bacterial taxa, while positively correlated with F. prausnitzii. Our results advance our comprehension of C. minuta's in modulating the gut microbial network. Conclusions: C. minuta disrupts the composition of the fecal microbiota. This disturbance is manifested through cross-feeding, nutritional competition, and supplementation of its own metabolic deficiencies, resulting in the specific enrichment or inhibition of the growth of certain bacteria. This study will shed light on the application of C. minuta as a probiotic for effective interventions on gut microbiomes and improvement of host health.

14.
Aquat Toxicol ; 255: 106399, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680893

RESUMEN

Glyphosate is a widely used broad-spectrum herbicide, its pollution to the surrounding conditions can't be ignored. It has been reported that glyphosate has poisonous impacts on aquatic animals. In this study, juvenile Litopenaeus vannamei (L. vannamei) was exposed to glyphosate, and the lethal concentration 50 (LC50) of glyphosate to juvenile L. vannamei for 48 h was 47.6 mg/L. The histological analysis for intestine and hepatopancreas and the intestinal microorganisms of L. vannamei were evaluated after 48 h of exposure to glyphosate with LC50. The histological analysis results showed that the lumen of hepatic tubules was diffused and deformed, the hepatic tubules were ruptured and intestinal villi were fallen off seriously after exposure to glyphosate for 48 h Moreover, the intestinal microbial composition and structure of L. vannamei were changed, with the abundance of Alphaproteobacteria increased significantly. The abundance of Rhodobacteraceae, Vibrio and Legionella increased, but there was no significant difference. The abundance of Bacillus, Paraburkholderia, Enhydrobacter, Comamonas and Alkanindiges decreased significantly. However, the homeostasis of intestinal microorganisms was destroyed. Phenotypic prediction of the two groups of microorganisms revealed a significant increase in the abundance of Facultatively Anaerobic in the glyphosate challenged group. This study suggested that hepatopancreas and intestinal tissue of L. vannamei were seriously damaged after 48 h of exposure to glyphosate with LC50, and intestinal microbial homeostasis was disrupted.


Asunto(s)
Microbioma Gastrointestinal , Penaeidae , Vibrio , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Intestinos , Hepatopáncreas , Glifosato
15.
Front Microbiol ; 14: 1088187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778868

RESUMEN

Metformin and liraglutide are used in the treatment of type 2 diabetes mellitus (T2DM) complicated with nonalcoholic fatty liver disease (NAFLD). Although these drugs can alter the intestinal microbiome, clinical data are required to explore their mechanisms of action. Using 16S sequencing technology, we analyzed and compared the intestinal bacterial community structure and function between patients before and after treatment (12 weeks) with the two drugs (metformin or liraglutide, n = 15) and healthy controls (n = 15). Moreover, combined with 19 clinical indices, the potential therapeutic mechanisms of the two drugs were compared. The studied clinical indices included those associated with islet ß-cell function (FPG, FINS, HbA1c, and HOMA-IR), inflammation (TNF-α, IL-6, and APN), lipid metabolism (TC, TG, and LDL-C), and liver function (ALT, AST, and GGT); the values of all indices changed significantly after treatment (p < 0.01). In addition, the effect of the two drugs on the intestinal bacterial community varied. Liraglutide treatment significantly increased the diversity and richness of the intestinal bacterial community (p < 0.05); it significantly increased the relative abundances of Bacteroidetes, Proteobacteria, and Bacilli, whereas metformin treatment significantly increased the relative abundance of Fusobacteria and Actinobacteria (p < 0.05). Metformin treatment increased the complexity and stability of the intestinal bacterial network. However, liraglutide treatment had a weaker effect on the intestinal bacterial network, and the network after treatment was similar to that in healthy controls. Correlation matrix analysis between dominant genera and clinical indicators showed that the correlation between the bacterial community and islet ß-cell function was stronger after liraglutide treatment, whereas the correlation between the bacterial community and inflammation-related factors was stronger after metformin treatment. Functional prediction showed that liraglutide could significantly affect the abundance of functional genes related to T2DM and NAFLD (p < 0.05), but the effect of metformin was not significant. This study is the first to report the changes in the intestinal bacterial community in patients treated with metformin or liraglutide and the differences between the mechanisms of action of metformin and liraglutide. Metformin or liraglutide has a therapeutic value in T2DM complicated with NAFLD, with liraglutide having a weaker effect on the intestinal bacterial community but a better therapeutic efficacy.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37273089

RESUMEN

Salmonella spp. are pathogenic bacteria that cause diarrhea, abortion, and death in yak and severely harm livestock breeding. Therefore, it is vital to identify a probiotic that effectively antagonizes Salmonella. To the best of our knowledge, few prior studies have investigated the efficacy of Enterococcus faecium against Salmonella. Here, we evaluated the enteroprotective mechanism of E. faecium in a mouse Salmonella infection model using hematoxylin-eosin (H&E) staining, quantitative real-time polymerase chain reaction (Q-PCR) technology, microbial diversity sequencing, and metabonomics. Enterococcus faecium inhibited the proinflammatory cytokines IL-1ß, IL-6, TNF-α, and IFN-γ and promoted the anti-inflammatory cytokine IL-10. The Firmicutes/Bacteroidota (F/B) ratio and the abundances of Firmicutes and Akkermansia were significantly higher in the E. faecium than in the Salmonella group. Metabonomics and microbial diversity sequencing disclosed five different metabolites with variable importance in the projection (VIP) > 3 that were characteristic of both the Salmonella and E. faecium groups. Combined omics revealed that Lactobacillus and Bacteroides were negatively and positively correlated, respectively, with cholic acid, while Desulfovibrio was positively correlated with lipids in both the control and Salmonella groups. Desulfovibrio was also positively correlated with lipids in both the Salmonella and E. faecium groups. Enterococcus faecium antagonizes Salmonella by normalizing the abundance of the intestinal microorganisms and modulating their metabolic pathways. Hence, it may efficaciously protect the host intestine against Salmonella infection.

17.
Microbiol Spectr ; 11(3): e0084923, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191572

RESUMEN

Diabetes and Alzheimer's disease (AD) are associated with specific changes in the composition of the intestinal flora. Studies have shown that the supplementation with pasteurized Akkermansia muciniphila has therapeutic and preventive effects on diabetes. However, it is not clear whether there is any association with improvement in and prevention of Alzheimer's disease and diabetes with Alzheimer's disease. Here, we found that pasteurized Akkermansia muciniphila can significantly improve the blood glucose, body mass index, and diabetes indexes of zebrafish with diabetes mellitus complicated with Alzheimer's disease and also alleviate the related indexes of Alzheimer's disease. The memory, anxiety, aggression, and social preference behavior of zebrafish with combined type 2 diabetes mellitus (T2DM) and Alzheimer's disease (TA zebrafish) were significantly improved after pasteurized Akkermansia muciniphila treatment. Moreover, we examined the preventive effect of pasteurized Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease. The results showed that the zebrafish in the prevention group were better in terms of biochemical index and behavior than the zebrafish in the treatment group. These findings provide new ideas for the prevention and treatment of diabetes mellitus complicated with Alzheimer's disease. IMPORTANCE The interaction between intestinal microflora and host affects the progression of diabetes and Alzheimer's disease. As a recognized next-generation probiotic, Akkermansia muciniphila has been shown to play a key role in the progression of diabetes and Alzheimer's disease, but whether A. muciniphila can improve diabetes complicated with Alzheimer's disease and its potential mechanism are unclear. In this study, a new zebrafish model of diabetes mellitus complicated with Alzheimer's disease was established, and the effect of Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease is discussed. The results showed that Akkermansia muciniphila after pasteurization significantly improved and prevented diabetes mellitus complicated with Alzheimer's disease. Treatment with pasteurized Akkermansia muciniphila improved the memory, social preference, and aggressive and anxiety behavior of TA zebrafish and alleviated the pathological characteristics of T2DM and AD. These results provide a new prospect for probiotics in the treatment of diabetes and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Animales , Pez Cebra , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Enfermedad de Alzheimer/terapia , Verrucomicrobia
18.
Anim Nutr ; 14: 356-369, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37635930

RESUMEN

The animal gut harbors diverse microbes that play an essential role in the well-being of their host. Specific diets, such as those rich in dietary fiber, are vital in disease prevention and treatment because they affect intestinal flora and have a positive impact on the metabolism, immunity, and intestinal function of the host. Dietary fiber can provide energy to colonic epithelial cells, regulate the structure and metabolism of intestinal flora, promote the production of intestinal mucosa, stimulate intestinal motility, improve glycemic and lipid responses, and regulate the digestion and absorption of nutrients, which is mainly attributed to short-chain fatty acids (SCFA), which is the metabolite of dietary fiber. By binding with G protein-coupled receptors (including GPR41, GPR43 and GPR109A) and inhibiting the activity of histone deacetylases, SCFA regulate appetite and glucolipid metabolism, promote the function of the intestinal barrier, alleviate oxidative stress, suppress inflammation, and maintain immune system homeostasis. This paper reviews the physicochemical properties of dietary fiber, the interaction between dietary fiber and intestinal microorganisms, the role of dietary fiber in maintaining intestinal health, and the function of SCFA, the metabolite of dietary fiber, in inhibiting inflammation. Furthermore, we consider the effects of dietary fiber on the intestinal health of pigs, the reproduction and lactation performance of sows, and the growth performance and meat quality of pigs.

19.
Sci Total Environ ; 905: 167036, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37709098

RESUMEN

Phthalic acid esters (PAEs) and TiO2 nanomaterials (nTiO2) are commonly used as plastic additives, nano-fertilizers or nano-pesticides. Their excessive co-applications led to the co-occurrence, which can induce damage to soil organisms such as Metaphire guillelmi (an earthworm widespread in farmland). However, the co-exposure effects of butyl benzyl phthalate (BBP, a typical PAEs) and nTiO2 on Metaphire guillelmi at environmental-relevant concentrations remain unclear. In this study, 1 mg kg-1 BBP and 1 mg kg-1 nTiO2 (anatase) were added into the soil to assess: (1) their effects on oxidative damage, digestive system, and neurotoxicity in Metaphire guillelmi gut on days 14 and 28; and (2) whether BBP and nTiO2 affected Metaphire guillelmi gut health by disrupting intestinal microorganisms. The results demonstrated that BBP and nTiO2 had the potential to inhibit the activity of superoxide dismutase, cellulase, protease, Na+K+-ATPase, and Ca2+-ATPase, as well as cause oxidative damage by altering intestinal bacteria such as Marmoricola and Microvirga at genus levels after 28 d-exposure. However, the exposure did not cause disorders of the intestinal bacteria. The present study provides more evidence for the sustainable application and scientific management of BBP and nTiO2, thus providing better guidance for PAEs and engineered nanomaterials regulations in agroecosystems.


Asunto(s)
Oligoquetos , Ácidos Ftálicos , Contaminantes del Suelo , Animales , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Ácidos Ftálicos/toxicidad , Suelo , Adenosina Trifosfatasas , Ésteres , Dibutil Ftalato
20.
Indian J Dermatol ; 67(5): 495-503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36865841

RESUMEN

Background: Psoriasis is an inflammatory skin disease. The correlation between intestinal microbiota and immune-mediated diseases makes scientists pay attention to the pathogenic role of microbiota. Objective: The aim of this study was to identify the gut microbial composition of patients with psoriasis. Methods: 16S rRNA gene sequencing method was used to analyse the faecal samples which was collected from 28 moderately severe psoriasis patients and 21 healthy controls and was followed by the analysing of informatics methods. Results: No visible differences can be observed in the diversity of gut microbiota between the psoriasis and the healthy patients, but the composition of the gut microbiota illustrate significant distinction between these two groups. At the phylum level, compared to the healthy control group, the psoriasis group shows higher relative abundance of Bacteroidetes and lower relative abundance of Proteobacteria (P < 0.05). At the genus level, unidentified_Enterobacteriaceae, unidentified_Lachnospiraceae, Romboutsia, Subdoligranulum, unidentified_Erysipelotrichaceae, Dorea were relatively less abundant in psoriasis patients, whereas Lactobacillus, Dialister were relatively more abundant in psoriasis group (all P < 0.05). LefSe analysis (linear discriminant analysis effect size) indicated that Negativicutes and Bacteroidia were potential biomarkers for psoriasis. Conclusion: This study identified the intestinal microecological environment of patients with psoriasis and healthy people, proving that psoriasis patients have a remarkably disturbed microbiome, and found several biomarkers of intestinal microorganisms in patients with psoriasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA