RESUMEN
Iron plays a crucial role in various metabolic processes. However, the impact of 5-aminolevulinic acid (ALA) in combination with iron chelators on iron metabolism and the efficacy of ALA-photodynamic therapy (PDT) remain inadequately understood. This study aimed to examine the effect of thiosemicarbazone derivatives during ALA treatment on specific genes related to iron metabolism, with a particular emphasis on mitochondrial iron metabolism genes. In our study, we observed differences depending on the cell line studied. For the HCT116 and MCF-7 cell lines, in most cases, the decrease in the expression of selected targets correlated with the increase in protoporphyrin IX (PPIX) concentration and the observed photodynamic effect, aligning with existing literature data. The Hs683 cell line showed a different gene expression pattern, previously not described in the literature. In this study, we collected an extensive analysis of the gene variation occurring after the application of novel thiosemicarbazone derivatives and presented versatile and effective compounds with great potential for use in ALA-PDT.
Asunto(s)
Ácido Aminolevulínico , Quelantes del Hierro , Hierro , Fotoquimioterapia , Tiosemicarbazonas , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/química , Fotoquimioterapia/métodos , Hierro/metabolismo , Quelantes del Hierro/farmacología , Quelantes del Hierro/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Protoporfirinas/metabolismo , Protoporfirinas/química , Células MCF-7 , Células HCT116 , Línea Celular TumoralRESUMEN
BACKGROUND: Adherence to iron chelation therapy (ICT) remains an issue among thalassemia patients. This study aimed to determine the prevalence of non-adherence to ICT among children with beta thalassemia major in Malaysia and the factors associated with it. METHODS: This was a cross-sectional study conducted between November 2019 and November 2021 at seven tertiary hospitals in Malaysia. Participants registered with Malaysian Thalassemia Registry were recruited by convenience sampling. Adherence was measured via pill count and self-reported adherence. Knowledge about thalassemia and ICT was measured using a questionnaire from Modul Thalassemia by Ministry of Health of Malaysia. A decision tree was used to identify predictors of non-adherence. RESULTS: A total of 135 patients were recruited. The prevalence of non-adherence to ICT in those who took subcutaneous ± oral medications was 47.5% (95% CI: 31.5%, 63.9%) and the prevalence of non-adherence to ICT in those who took oral medications only was 21.1% (95% CI: 13.4%, 30.6%). The median knowledge score was 67.5% (IQR 15%). A decision tree has identified two factors associated with non-adherence. They were ICT's route of administration and knowledge score. Out of 100 patients who were on oral medications only, 79 were expected to adhere. Out of 100 patients who were on subcutaneous ± oral medications and scored less than 56.25% in knowledge questionnaire, 86 were expected to non-adhere. Based on the logistic regression, the odds of non-adherence in patients who took oral medications only was 71% lower than the odds of non-adherence in patients who took subcutaneous ± oral medications (OR = 0.29; 95% CI = 0.13, 0.65; p = .002). CONCLUSION: The prevalence of non-adherence to ICT among children with beta thalassemia major in Malaysia was 20/95 (21.1%) in those who took oral medications only and the prevalence of non-adherence was 19/40 (47.5%) in those who took subcutaneous ± oral medications. The factors associated with non-adherence were ICT's route of administration and knowledge score.
Asunto(s)
Sobrecarga de Hierro , Talasemia , Talasemia beta , Niño , Humanos , Terapia por Quelación , Talasemia beta/tratamiento farmacológico , Talasemia beta/epidemiología , Estudios Transversales , Talasemia/tratamiento farmacológico , Hierro , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/tratamiento farmacológicoRESUMEN
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. ß-amyloid plaque (Aß) deposition and hyperphosphorylated tau, as well as dysregulated energy metabolism in the brain, are key factors in the progression of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, which is closely correlated with the clinical symptoms of AD; therefore, understanding the role of brain iron accumulation in the major pathological aspects of AD is critical for its treatment. This review discusses the main mechanisms and recent advances in the involvement of iron in the above pathological processes, including in iron-induced oxidative stress-dependent and non-dependent directions, summarizes the hypothesis that the iron-induced dysregulation of energy metabolism may be an initiating factor for AD, based on the available evidence, and further discusses the therapeutic perspectives of targeting iron.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Hierro/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismoRESUMEN
Tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most limiting diseases of this crop. The use of fungicides and varieties resistant to the pathogen has not provided adequate control of the disease. In this study, siderophore-producing bacteria isolated from wild cocoa trees from the Colombian Amazon were characterized to identify prominent strategies for plant protection. The isolates were taxonomically classified into five different genera. Eight of the fourteen were identified as bacteria of the Acinetobacter baumannii complex. Isolates CBIO024, CBIO086, CBIO117, CBIO123, and CBIO159 belonging to this complex showed the highest efficiency in siderophore synthesis, producing these molecules in a range of 91-129 µmol/L deferoxamine mesylate equivalents. A reduction in disease severity of up to 45% was obtained when plants were pretreated with CBIO117 siderophore-rich cell-free supernatant (SodSid). Regarding the mechanism of action that caused antagonistic activity against Fol, it was found that plants infected only with Fol and plants pretreated with SodSid CBIO117 and infected with Fol showed higher levels of PR1 and ERF1 gene expression than control plants. In contrast, MYC2 gene expression was not induced by the SodSid CBIO117 application. However, it was upregulated in plants infected with Fol and plants pretreated with SodSid CBIO117 and infected with the pathogen. In addition to the disease suppression exerted by SodSid CBIO117, the results suggest that the mechanism underlying this effect is related to an induction of systemic defense through the salicylic acid, ethylene, and priming defense via the jasmonic acid pathway.
Asunto(s)
Acinetobacter baumannii , Cacao , Fusarium , Solanum lycopersicum , Colombia , SideróforosRESUMEN
Ferroptosis is a cell death event caused by increased lipid peroxidation leading to iron-dependent oxidative stress and is associated with a wide variety of diseases. In recent years, ferroptosis inhibition has emerged as a novel strategy to target different pathologies. Here, we report the synthesis of two purine derivatives, 1 and 2, for iron chelation strategy and evaluate their potency to inhibit erastin-induced ferroptosis. Both compounds showed efficient iron chelation in solution as well as in cellular environment. The crystal structure of the purine derivatives with iron demonstrated a 2 : 1 (ligand to metal center) stoichiometry for iron and purine derivative complexation. The synthesized compounds also decrease the reactive oxygen species concentration in cell cultures. Compound 2 showed better potency towards the prevention of ferroptotic cell death as compared to commercially available iron chelator in the erastin-induced ferroptosis cell culture model. Such purine analogues are potential functional scaffolds for the development of target molecules for ferroptosis inhibition.
Asunto(s)
Hierro , Purinas , Muerte Celular , Quelantes del Hierro , Piperazinas , Purinas/farmacologíaRESUMEN
Photodynamic therapy is one of the most patient friendly and promising anticancer therapies. The active ingredient is irradiated protoporphyrin IX, which is produced in the body that transfers energy to the oxygen-triggering phototoxic reaction. This effect could be enhanced by using iron chelators, which inhibit the final step of heme biosynthesis, thereby increasing the protoporphyrin IX concentration. In the presented work, we studied thiosemicarbazone derivative, which is a universal enhancer of the phototoxic effect. We examined several genes that are involved in the transport of the heme substrates and heme itself. The results indicate that despite an elevated level of ABCG2, which is responsible for the PpIX efflux, its concentration in a cell is sufficient to trigger a photodynamic reaction. This effect was not observed for 5-ALA alone. The analyzed cell lines differed in the scale of the effect and a correlation with the PpIX accumulation was observed. Additionally, an increased activation of the iron transporter MFNR1 was also detected, which indicated that the regulation of iron transport is essential in PDT.
Asunto(s)
Fotoquimioterapia , Tiosemicarbazonas , Humanos , Tiosemicarbazonas/farmacología , Fotoquimioterapia/métodos , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Ácido Aminolevulínico/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Hemo/metabolismo , Hierro , Línea Celular TumoralRESUMEN
NaCT mediates citrate uptake in the liver cell line HepG2. When these cells were exposed to iron (Fe3+), citrate uptake/binding as monitored by the association of [14C]-citrate with cells increased. However, there was no change in NaCT expression and function, indicating that NaCT was not responsible for this Fe3+-induced citrate uptake/binding. Interestingly however, the process exhibited substrate selectivity and saturability as if the process was mediated by a transporter. Notwithstanding these features, subsequent studies demonstrated that the iron-induced citrate uptake/binding did not involve citrate entry into cells; instead, the increase was due to the formation of citrate-Fe3+ chelate that adsorbed to the cell surface. Surprisingly, the same phenomenon was observed in culture wells without HepG2 cells, indicating the adsorption of the citrate-Fe3+ chelate to the plastic surface of culture wells. We used this interesting phenomenon as a simple screening technique for new iron chelators with the logic that if another iron chelator is present in the assay system, it would compete with citrate for binding to Fe3+ and prevent the formation and adsorption of citrate-Fe3+ to the culture well. This technique was validated with the known iron chelators deferiprone and deferoxamine, and with the bacterial siderophore 2,3-dihydroxybenzoic acid and the catechol carbidopa.
Asunto(s)
Artefactos , Ácido Cítrico , Ácido Cítrico/farmacología , Deferoxamina/farmacología , Compuestos Férricos/farmacología , Hierro/metabolismo , Quelantes del Hierro/farmacología , PlásticosRESUMEN
A novel class of benzamide-hydroxypyridinone (HPO) derivatives were innovatively designed, synthesised, and biologically evaluated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through pharmacophores-merged approaches based on lead compounds 18d, benzyloxy phenyl analogs, and deferiprone (DFP). These hybrids possessed potent Monoamine oxidase B (MAO-B) inhibition as well as excellent iron chelation, with pFe3+ values ranging from 18.13 to 19.39. Among all the compounds, 8g exhibited the most potent selective MAO-B inhibitor (IC50 = 68.4 nM, SI = 213). Moreover, 8g showed favourable pharmacokinetic properties and had great potential to penetrate the BBB in silico and PAMPA-BBB assay. Molecular modelling showed that 8g could adopt an extended conformation and have more enhanced interactions with MAO-B than 18d. In vitro and in vivo assays demonstrated that 8g remarkably resisted Aß-induced oxidation and ameliorated cognitive impairment induced by scopolamine. Taken collectively, these results suggest that compound 8g is a potential multifunctional candidate for anti-AD treatment.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Antioxidantes/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/síntesis química , Antioxidantes/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-ActividadRESUMEN
Osteosarcoma is a common malignant bone tumor in clinical orthopedics. Iron chelators have inhibitory effects on many cancers, but their effects and mechanisms in osteosarcoma are still uncertain. Our in vitro results show that deferoxamine (DFO) and deferasirox (DFX), two iron chelators, significantly inhibited the proliferation of osteosarcoma cells (MG-63, MNNG/HOS and K7M2). The viability of osteosarcoma cells was decreased by DFO and DFX in a concentration-dependent manner. DFO and DFX generated reactive oxygen species (ROS), altered iron metabolism and triggered apoptosis in osteosarcoma cells. Iron chelator-induced apoptosis was due to the activation of the MAPK signaling pathway, with increased phosphorylation levels of JNK, p38 and ERK, and ROS generation; in this process, the expression of C-caspase-3 and C-PARP increased. In an orthotopic osteosarcoma transplantation model, iron chelators (20 mg/kg every day, Ip, for 14 days) significantly inhibited the growth of the tumor. Immunohistochemical analysis showed that iron metabolism was altered, apoptosis was promoted, and malignant proliferation was reduced with iron chelators in the tumor tissues. In conclusion, we observed that iron chelators induced apoptosis in osteosarcoma by activating the ROS-related MAPK signaling pathway. Because iron is crucial for cell proliferation, iron chelators may provide a novel therapeutic strategy for osteosarcoma.
Asunto(s)
Deferasirox/uso terapéutico , Deferoxamina/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Sideróforos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Deferasirox/farmacología , Deferoxamina/farmacología , Humanos , Hierro/metabolismo , Ratones , Osteosarcoma/metabolismo , Sideróforos/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Iron is essential for multiple bacterial processes and is thus required for host colonization and infection. The antimicrobial activity of multiple iron chelators and gallium-based therapies against different bacterial species has been characterized in preclinical studies. In this review, we provide a synthesis of studies characterizing the antimicrobial activity of the major classes of iron chelators (hydroxamates, aminocarboxylates and hydroxypyridinones) and gallium compounds. Special emphasis is placed on recent in-vitro and in-vivo studies with the novel iron chelator DIBI. Limitations associated with iron chelation and gallium-based therapies are presented, with emphasis on limitations of preclinical models, lack of understanding regarding mechanisms of action, and potential host toxicity. Collectively, these studies demonstrate potential for iron chelators and gallium to be used as antimicrobial agents, particularly in combination with existing antibiotics. Additional studies are needed in order to characterize the activity of these compounds under physiologic conditions and address potential limitations associated with their clinical use as antimicrobial agents.
Asunto(s)
Infecciones Bacterianas/tratamiento farmacológico , Galio/uso terapéutico , Quelantes del Hierro/uso terapéutico , Hierro/metabolismo , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Farmacorresistencia Bacteriana , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/uso terapéutico , Hierro/química , Quelantes del Hierro/química , Pruebas de Sensibilidad MicrobianaRESUMEN
Neoplastic diseases are still a major medical challenge, requiring a constant search for new therapeutic options. A serious problem of many cancers is resistance to anticancer drugs and disease progression in metastases or local recurrence. These characteristics of cancer cells may be related to the specific properties of cancer stem cells (CSC). CSCs are involved in inhibiting cells' maturation, which is essential for maintaining their self-renewal capacity and pluripotency. They show increased expression of transcription factor proteins, which were defined as stemness-related markers. This group of proteins includes OCT4, SOX2, KLF4, Nanog, and SALL4. It has been noticed that the metabolism of cancer cells is changed, and the demand for iron is significantly increased. Iron chelators have been proven to have antitumor activity and influence the expression of stemness-related markers, thus reducing chemoresistance and the risk of tumor cell progression. This prompts further investigation of these agents as promising anticancer novel drugs. The article presents the characteristics of stemness markers and their influence on the development and course of neoplastic disease. Available iron chelators were also described, and their effects on cancer cells and expression of stemness-related markers were analyzed.
Asunto(s)
Quelantes del Hierro/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
The iron dependence of antibiotic-resistant microbes represents an Achilles' heel that can be exploited broadly. The growing global problem of antibiotic resistance of microbial pathogens wherein microbes become resistant to the very antibiotics used against them during infection is linked not only to our health uses but also to agribusiness practices and the changing environment. Here we review mechanisms of microbial iron acquisition and host iron withdrawal defense, and the influence of iron withdrawal on the antimicrobial activity of antibiotics. Antibiotic-resistant microbes are unaltered in their iron requirements, but iron withdrawal from microbes enhances the activities of various antibiotics and importantly suppresses outgrowth of antibiotic-exposed resistant microbial survivors. Of the three therapeutic approaches available to exploit microbial iron susceptibility, including (1) use of gallium as a non-functional iron analogue, (2) Trojan horse conjugates of microbial siderophores carrying antibiotics, and (3) new generation iron chelators, purposely designed as anti-microbials, the latter offers various advantages. For instance, these novel anti-microbial chelators overcome the limitations of conventional clinically-used hematological chelators which display host toxicity and are not useful antimicrobials. 3-Hydroxypyridin-4-one-containing polymeric chelators appear to have the highest potential. DIBI (developmental code name) is a well-developed lead candidate, being a low molecular weight, water-soluble copolymer with enhanced iron binding characteristics, strong anti-microbial and anti-inflammatory activities, low toxicity for animals and demonstrated freedom from microbial resistance development. DIBI has been shown to enhance antibiotic efficacy for antibiotic-resistant microbes during infection, and it also prevents recovery growth and resistance development during microbe exposure to various antibiotics. Because DIBI bolsters innate iron withdrawal defenses of the infected host, it has potential to provide a host-directed anti-infective therapy.
RESUMEN
Unbiased morphological profiling of bioactivity, for example, in the cell painting assay (CPA), enables the identification of a small molecule's mode of action based on its similarity to the bioactivity of reference compounds, irrespective of the biological target or chemical similarity. This is particularly important for small molecules with nonprotein targets as these are rather difficult to identify with widely employed target-identification methods. We employed morphological profiling using the CPA to identify compounds that are biosimilar to the iron chelator deferoxamine. Structurally different compounds with different annotated cellular targets provoked a shared physiological response, thereby defining a cluster based on their morphological fingerprints. This cluster is based on a shared mode of action and not on a shared target, that is, cell-cycle modulation in the S or G2 phase. Hierarchical clustering of morphological fingerprints revealed subclusters that are based on the mechanism of action and could be used to predict target-related bioactivity.
Asunto(s)
Quelantes del Hierro/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Quelantes del Hierro/química , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-ß1-42 (Aß1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.
Asunto(s)
Antioxidantes/química , Diseño de Fármacos , Quelantes del Hierro/síntesis química , Inhibidores de la Monoaminooxidasa/síntesis química , Monoaminooxidasa/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Animales , Conducta Animal/efectos de los fármacos , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Cumarinas/química , Modelos Animales de Enfermedad , Humanos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Ratones , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Células PC12 , Fragmentos de Péptidos/farmacología , Ratas , Relación Estructura-ActividadRESUMEN
Ubiquitin proteasome system (UPS) impairment, excessive cellular oxidative stress, and iron dyshomeostasis are key to substantia nigra dopaminergic neuronal degeneration in Parkinson's disease (PD); however, a link between these features remains unconfirmed. Using the proteasome inhibitor lactacystin we confirm that nigral injury via UPS impairment disrupts iron homeostasis, in turn increasing oxidative stress and promoting protein aggregation. We demonstrate the neuroprotective potential of two novel 1-hydroxy-2(1H)-pyridinone (1,2-HOPO) iron chelators, compounds C6 and C9, against lactacystin-induced cell death. We demonstrate that this cellular preservation relates to the compounds' iron chelating capabilities and subsequent reduced capacity of iron to form reactive oxygen species (ROS), where we also show that the ligands act as antioxidant agents. Our results also demonstrate the ability of C6 and C9 to reduce intracellular lactacystin-induced α-synuclein burden. Stability constant measurements confirmed a high affinity of C6 and C9 for Fe3+ and display a 3:1 HOPO:Fe3+ complex formation at physiological pH. Reducing iron reactivity could prevent the demise of nigral dopaminergic neurons. We provide evidence that the lactacystin model presents with several neuropathological hallmarks of PD related to iron dyshomeostasis and that the novel chelating compounds C6 and C9 can protect against lactacystin-related neurotoxicity.
Asunto(s)
Quelantes del Hierro/farmacología , Fármacos Neuroprotectores/metabolismo , Enfermedad de Parkinson/metabolismo , Ubiquitina/metabolismo , Acetilcisteína/análogos & derivados , Animales , Dopamina , Neuronas Dopaminérgicas , Humanos , Hierro , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Sustancia Negra , alfa-SinucleínaRESUMEN
While the etiology of non-familial Parkinson's disease (PD) remains unclear, there is evidence that increased levels of tissue iron may be a contributing factor. Moreover, exposure to some environmental toxicants is considered an additional risk factor. Therefore, brain-targeted iron chelators are of interest as antidotes for poisoning with dopaminergic toxicants, and as potential treatment of PD. We, therefore, designed a series of small molecules with high affinity for ferric iron and containing structural elements to allow their transport to the brain via the neutral amino acid transporter, LAT1 (SLC7A5). Five candidate molecules were synthesized and initially characterized for protection from ferroptosis in human neurons. The promising hydroxypyridinone SK4 was characterized further. Selective iron chelation within the physiological range of pH values and uptake by LAT1 were confirmed. Concentrations of 10-20 µM blocked neurite loss and cell demise triggered by the parkinsonian neurotoxicants, methyl-phenyl-pyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in human dopaminergic neuronal cultures (LUHMES cells). Rescue was also observed when chelators were given after the toxicant. SK4 derivatives that either lacked LAT1 affinity or had reduced iron chelation potency showed altered activity in our assay panel, as expected. Thus, an iron chelator was developed that revealed neuroprotective properties, as assessed in several models. The data strongly support the role of iron in dopaminergic neurotoxicity and suggests further exploration of the proposed design strategy for improving brain iron chelation.
Asunto(s)
Neuronas Dopaminérgicas/fisiología , Sustancias Peligrosas/química , Sustancias Peligrosas/toxicidad , Fármacos Neuroprotectores/química , Dopamina/metabolismo , Humanos , Quelantes del HierroRESUMEN
Cardiac complications including arrhythmia and especially atrial fibrillation (AF) are common causes of death in ß-thalassemia patients. The main factor in the etiopathogenesis of these complications is iron overload, which results in increased oxidative stress. Although there is a known association between cardiac complications and iron overload in ß-thalassemia patients, there is no comprehensive review on AF and excessive iron with a focus on oxidative stress in these patients. The aim of this article was to review the different aspects of AF in ß-thalassemia patients with a focus on the prevention and treatment of AF by using iron chelators and/or anti-oxidants. AF in ß-thalassemia patients is more common than in the general population. One of the most important causes of AF is cardiac iron overload and the harmful effects of increased oxidative stress. Iron-induced AF can be reversed by using an intensive iron chelation regimen. Based on a few experimental studies, the combination of iron chelators with some anti-oxidants, including NAC, vitamin C, and acetaminophen, can lead to improved cardiac protection. However, the effect of such combinations on cardiac arrhythmias should be further evaluated with animal and human studies.
Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/etiología , Sobrecarga de Hierro/etiología , Hierro/administración & dosificación , Hierro/efectos adversos , Talasemia beta/complicaciones , Animales , Antioxidantes/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacosRESUMEN
To ensure their high proliferation rate, tumor cells have an iron metabolic disorder causing them to have increased iron needs, making them more susceptible to iron deprivation. This vulnerability could be a therapeutic target. In breast cancers, the development of new therapeutic approaches is urgently needed for patients with triple-negative tumors, which frequently relapse after chemotherapy and suffer from a lack of targeted therapies. In this study, we demonstrated that deferasirox (DFX) synergises with standard chemotherapeutic agents such as doxorubicin, cisplatin and carboplatin to inhibit cell proliferation and induce apoptosis and autophagy in triple-negative breast cancer (TNBC) cells. Moreover, the combination of DFX with doxorubicin and cyclophosphamide delayed recurrences in breast cancer patient-derived xenografts without increasing the side-effects of chemotherapies alone or altering the global iron storage of mice. Antitumor synergy of DFX and doxorubicin seems to involve downregulation of the phosphoinositide 3-kinase and nuclear factor-κB pathways. Iron deprivation in combination with chemotherapy could thus help to improve the effectiveness of chemotherapy in TNBC patients without increasing toxicity. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carboplatino/farmacología , Cisplatino/farmacología , Deferasirox/farmacología , Doxorrubicina/farmacología , Quelantes del Hierro/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Hierro/metabolismo , Células MCF-7 , Ratones Desnudos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Iron is an essential element for virtually all organisms. On the one hand, it facilitates cell proliferation and growth. On the other hand, iron may be detrimental due to its redox abilities, thereby contributing to free radical formation, which in turn may provoke oxidative stress and DNA damage. Iron also plays a crucial role in tumor progression and metastasis due to its major function in tumor cell survival and reprogramming of the tumor microenvironment. Therefore, pathways of iron acquisition, export, and storage are often perturbed in cancers, suggesting that targeting iron metabolic pathways might represent opportunities towards innovative approaches in cancer treatment. Recent evidence points to a crucial role of tumor-associated macrophages (TAMs) as a source of iron within the tumor microenvironment, implying that specifically targeting the TAM iron pool might add to the efficacy of tumor therapy. Here, we provide a brief summary of tumor cell iron metabolism and updated molecular mechanisms that regulate cellular and systemic iron homeostasis with regard to the development of cancer. Since iron adds to shaping major hallmarks of cancer, we emphasize innovative therapeutic strategies to address the iron pool of tumor cells or cells of the tumor microenvironment for the treatment of cancer.
Asunto(s)
Hierro/metabolismo , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Daño del ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Estrés Oxidativo , Microambiente TumoralRESUMEN
BACKGROUND: Iron overload is a major issue for transfusion-dependent patients. Repeated transfusions result in the loading of large amounts of haem-derived iron on macrophages, and the haemin in turn induces cell death and the generation of reactive oxygen species (ROS) in both murine macrophages and human monocytic THP-1 cells. This haemin-induced cell death process has been shown to be iron-dependent. Thus, we hypothesized that haemin-induced THP-1 cell death is a result of ferroptosis, an iron-dependent mechanism of cell death regulation. MATERIAL AND METHODS: Human monocytic THP-1 cells were treated with haemin, and haemin-induced cell death and ROS generation were assessed using flow cytometry. RESULTS: Haemin-induced THP-1 cell death showed a necrosis pattern, and treatment with iron chelators suppressed both haemin-induced cell death and ROS generation. Treatment with ferrostatin-1, a ferroptosis inhibitor, suppressed haemin-induced cell death without affecting ROS generation, whereas erastin, a ferroptosis inducer, enhanced both haemin-induced cell death and ROS generation. DISCUSSION: Our findings support haemin-induced cell death as an example of ferroptosis. Therefore, ferroptosis inhibitors may be useful for the treatment or prevention of transfusion iron overload.