Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904805

RESUMEN

Nowadays, the leading role of data from sensors to monitor crop irrigation practices is indisputable. The combination of ground and space monitoring data and agrohydrological modeling made it possible to evaluate the effectiveness of crop irrigation. This paper presents some additions to recently published results of field study at the territory of the Privolzhskaya irrigation system located on the left bank of the Volga in the Russian Federation, during the growing season of 2012. Data were obtained for 19 crops of irrigated alfalfa during the second year of their growing period. Irrigation water applications to these crops was carried out by the center pivot sprinklers. The actual crop evapotranspiration and its components being derived with the SEBAL model from MODIS satellite images data. As a result, a time series of daily values of evapotranspiration and transpiration were obtained for the area occupied by each of these crops. To assess the effectiveness of irrigation of alfalfa crops, six indicators were used based on the use of data on yield, irrigation depth, actual evapotranspiration, transpiration and basal evaporation deficit. The series of indicators estimating irrigation effectiveness were analyzed and ranked. The obtained rank values were used to analyze the similarity and non-similarity of indicators of irrigation effectiveness of alfalfa crops. As a result of this analysis, the opportunity to assess irrigation effectiveness with the help of data from ground and space-based sensors was proved.

2.
Plants (Basel) ; 13(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39274008

RESUMEN

In order to ensure national grain and oil security, it is imperative to expand the soybean planting area in the Xinjiang region. However, the scarcity of water resources in southern Xinjiang, the relatively backward soybean planting technology, and the lack of a supporting irrigation system have negatively impacted soybean planting and yield. In 2022 and 2023, we conducted an experiment which included three irrigation amounts of 27 mm, 36 mm, and 45 mm and analyzed the changes in dry mass and yield. Additionally, we simulated the potential yield using the corrected DSSAT-CROPGRO-Soybean model and biomass based on the meteorological data from 1994 to 2023. The results demonstrated that the model was capable of accurately predicting soybean emergence (the relative root mean square error (nRMSE) = 0, the absolute relative error (ARE) = 0), flowering (nRMSE = 0, ARE = 2.78%), maturity (nRMSE = 0, ARE = 3.21%). The model demonstrated high levels of accuracy in predicting soybean biomass (R2 = 0.98, nRMSE = 20.50%, ARE = 20.63%), 0-80 cm soil water storage (R2 = 0.64, nRMSE = 7.78%, ARE = 3.24%), and yield (R2 = 0.81, nRMSE = 10.83%, ARE = 8.79%). The biomass of soybean plants increases with the increase in irrigation amount. The highest biomass of 63 mm is 9379.19 kg·hm-2. When the irrigation yield is 36-45 mm (p < 0.05), the maximum yield can reach 4984.73 kg·hm-2; the maximum efficiency of soybean irrigation water was 33-36 mm. In light of the impact of soybean yield and irrigation water use efficiency, the optimal irrigation amount for soybean cultivation in southern Xinjiang is estimated to be between 36 and 42 mm. The simulation results provide a theoretical foundation for soybean cultivation in southern Xinjiang.

3.
Front Plant Sci ; 15: 1451350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39479537

RESUMEN

Background: The pervasively imprudent practices of irrigation and nitrogen (N) application within Oasis Cool Irrigation zones have led to significant soil nitrogen loss and a marked decrease in water and nitrogen use efficiency. Methods: To address this concern, a comprehensive field experiment was conducted from April to September in 2023 to investigate the impact of varying degrees of water and fertilization regulation strategies on pivotal parameters including potato yield, quality, nitrogen balance, and water-nitrogen use efficiency. The experimental design incorporated two water deficit degrees at potato seedling (W1, 55%-65% of Field Capacity (FC); W2, 45%-55% of FC), and four distinct nitrogen application gradients (N0, 0 kg ha-1 of N; N1, 130 kg ha-1 of N; N2, 185 kg ha-1 of N; N3, 240 kg ha-1 of N). A control was also included, comprising N0 nitrogen application and full irrigation (W0, 65%-75% of FC), totally eight treatments and one check. Results: The results indicated that the tuber yield, plant dry matter accumulation, plant height, plant stem, and leaf area index increased with higher nitrogen fertilizer application and irrigation volume. However, tuber starch content, vitamin C, and protein content initially increased and then decreased, while reducing sugar content consistently decreased. Except for W1N2 treatment, the irrigation water use efficiency increased as the N application rate rose, while the nitrogen partial factor productivity, crop nitrogen use efficiency and soil nitrogen use efficiency decreased with an increase in N fertilizer application. The W1N2 treatment resulted in a higher yield (43.16 t ha-1), highest crop nitrogen use efficiency (0.95) and systematic nitrogen use efficiency (0.72),while maintaining moderate levels of soil nitrate and ammonium nitrogen. Conclusion: Therefore, through the construction of an integrated evaluation index (IEI), the W1N2 treatment of mild water deficit (55%-65% of FC) at potato seedling combined with the medium nitrogen application (185 kg ha-1 of N) has the highest IEI (0.978), it was recommended as the optimal water-nitrogen regulation and management strategies to facilitate high-yield, high-efficiency, and environmentally sustainable potato production in the cold and arid oasis areas of northwest China.

4.
Environ Sci Pollut Res Int ; 29(47): 70963-70975, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35595894

RESUMEN

Lower irrigation efficiency and energy poverty cast a pall on the prospects for sustainable development. However, their relationship is poorly understood, particularly in rural China. Using the China Family Panel Studies 2014-2018 waves, this study examines the impact of energy poverty (EP) on irrigation water efficiency (IWE). Result show that EP reduced IWE by 28.3 ~ 42.4%. These results are robust to a variety of estimation methods. The underlying mechanisms, as revealed by structural equation modeling, are that health and non-agricultural employment act as mediators of the EP-IWE relationship. Non-agricultural employment has a positive and statistically significant mediating effect, indicating that efforts to alleviate energy poverty are partially transmitted to IWE.


Asunto(s)
Pobreza , Población Rural , China , Humanos , Factores Socioeconómicos , Agua
5.
Front Plant Sci ; 12: 722459, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721454

RESUMEN

The efficient utilization of irrigation water and nitrogen is of great importance for sustainable agricultural production. Alternate partial root-zone drip irrigation (APRD) is an innovative water-saving drip irrigation technology. However, the coupling effects of water and nitrogen (N) supply under APRD on crop growth, water and N use efficiency, as well as the utilization and fate of residual nitrates accumulated in the soil profile are not clear. A simulated soil column experiment where 30-40 cm soil layer was 15NO3-labeled as residual nitrate was conducted to investigate the coupling effects of different water [sufficient irrigation (W1), two-thirds of the W1(W2)] and N [high level (N1), 50% of N1 (N2)] supplies under different irrigation modes [conventional irrigation (C), APRD (A)] on tomato growth, irrigation water (IWUE) and N use efficiencies (NUE), and the fate of residual N. The results showed that, compared with CW1N1, AW1N1 promoted root growth and nitrogen absorption, and increased tomato yield, while the N absorption and yield did not vary significantly in AW2N1. The N absorption in AW2N2 decreased by 16.1%, while the tomato yield decreased by only 8.8% compared with CW1N1. The highest IWUE appeared in AW2N1, whereas the highest NUE was observed in AW2N2, with no significant difference in NUE between AW2N1 and CW1N1 at the same N supply level. The 15N accumulation peak layer was almost the same as the originally labeled layer under APRD, whereas it moved 10-20 cm downwards under CW1N1. The amount of 15N accumulated in the 0-40 cm layer increased with the decreasing irrigation water and nitrogen supply, with an increase of 82.9-141.1% in APRD compared with that in CW1N1. The utilization of the 15N labeled soil profile by the tomato plants increased by 9-20.5%, whereas the loss rate of 15N from the plant-soil column system decreased by 21.3-50.1% in APRD compared with the CW1N1 treatment. Thus, APRD has great potential in saving irrigation water, facilitating water use while reducing the loss of residual nitrate accumulated in the soil profile, but has no significant effect on the NUE absorbed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA