Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 369: 122357, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232327

RESUMEN

A large amount of greenhouse gas nitrous oxide (N2O) will be produced during the biological nitrogen removal process for organic wastewater of low C/N ratio. One of the effective methods to solve this problem is to incorporate inexpensive carbon source. In this study, raw wastewater (RW) from pig farm, that was not anaerobically digested, was utilized as exogenous carbon in both A/O and SBR aerobic reactor to treat liquid digestate with high ammonia nitrogen and low C/N ratio. The results showed that N2O emission in SBR was higher than that of A/O process under the same nitrogen load. The N2O conversion in the biological nitrogen removal process was investigated by the strategy of integrating stable isotope method and metagenomics. The δO18-N2O, δN15-N2O, and SP values of the SBR were closer to the denitrification values of Ammonia-Oxidizing Bacteria (AOB) than those of A/O. The abundance of AOB in the SBR reactor was higher than that in the A/O reactor, while the abundance of denitrifying bacteria was lower. The amoA/B/C gene abundance in the SBR was greater than that in the A/O, and the NOS gene abundance was the opposite. The results indicated that both AOB denitrification and bacterial denitrification led to the increase of N2O emissions of the SBR.


Asunto(s)
Amoníaco , Bacterias , Desnitrificación , Nitrógeno , Óxido Nitroso , Aguas Residuales , Aguas Residuales/química , Amoníaco/metabolismo , Bacterias/metabolismo , Óxido Nitroso/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Oxidación-Reducción
2.
J Environ Manage ; 366: 121870, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032251

RESUMEN

Glycerol, an abundant by-product of biodiesel production, represented a promising carbon source for enhancing nutrient removal from low C/N ratio wastewater. This study discovered a novel approach to initiate glycerol-driven denitrifying phosphorus removal (DPR) in situ by creating a short-term microaerobic environment within the aerobic zone. This approach facilitated the in-situ conversion of glycerol, which was subsequently utilized by denitrifying phosphate accumulating organisms (DPAOs) for DPR. The feasibility and stability of glycerol-driven DPR were validated in a continuous-flow pilot-scale reactor. Anaerobic phosphorus release increased from 1.0 mg/L/h to 2.5 mg/L/h, with fermentation bacteria and related functional genes showing significant increases. The stable stage exhibited 92.8% phosphorus removal efficiency and 55.5% DPR percentage. The microaerobic environment enhanced fermentation bacteria enrichment, crucial for glycerol-driven DPR stability. The collaborative interaction between fermentation bacteria and phosphate accumulating organisms (PAOs) played a key role in sustaining glycerol-driven DPR stability. These findings provide a robust theoretical foundation for applying glycerol-driven DPR in established wastewater treatment plants.


Asunto(s)
Desnitrificación , Glicerol , Fósforo , Aguas Residuales , Fósforo/metabolismo , Glicerol/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Fermentación , Bacterias/metabolismo
3.
Environ Res ; 216(Pt 4): 114687, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356669

RESUMEN

In recent years, iron mediated autotrophic denitrification has been a concern because it overcomes the absence of organic carbon and has been successfully used in denitrification for low C/N ratio wastewater. However, there is currently a lack of a more systematic summary of iron-based materials that can be used for denitrification, and no detailed overview about the mechanism of iron mediated autotrophic denitrification has been reported. In this study, the iron materials with different valence states that can be used for denitrification were summarized, and emphasized, as well as the mechanism in different interaction systems were emphasize. In addition, the contribution of various microorganisms in nitrate reduction were analyzed and the effects of operating conditions and water quality were evaluated. Finally, the challenges and shortcomings of the denitrification process were discussed aiming to find better practical engineering applications of iron-based denitrification.


Asunto(s)
Desnitrificación , Aguas Residuales , Hierro , Reactores Biológicos , Nitrógeno , Nitratos
4.
Environ Res ; 210: 112856, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35150713

RESUMEN

Three-dimensional biofilm-electrode reactors (3D-BERs) were fabricated and used to simultaneously remove nitrate and metronidazole (MNZ) from low-C/N-ratio wastewater. The results showed that 1 mg/L MNZ significantly promoted nitrate removal. After MNZ was added to the reactor, the removal efficiencies of total nitrogen (TN) and NO3--N increased significantly from 18.97% and 52.09% to 71.63% and 99.98% within 6 h, respectively. The MNZ-removal kinetics conformed to a pseudo-first-order model, and the removal rate constant reached a maximum value of 0.853 h-1, which was 4.1 and 2.8 times higher than that of pure microorganisms and pure electrochemical reactors, respectively. This indicated that the 3D-BERs constructed in this study were capable of simultaneous MNZ degradation and denitrification. In the presence of nitrate, six MNZ-degradation intermediates were identified, and four MNZ transformation pathways were proposed, including cleavage of hydroxyethyl groups, reduction of nitro groups, N-denitration, and deprotonation of side-chain hydroxyl groups. High-throughput sequencing revealed that the reactor was rich in various MNZ-degraders and denitrifiers, such as Hydrogenophaga, Methylomonas, Crenohrix, Dechloromonas, and Methylophilus. A function prediction analysis of nitrogen metabolism showed that the 3D-BER reactor with MNZ had higher denitrification activity than the other reactors tested. It was speculated that the intermediates produced by MNZ could act as carbon sources allowing denitrifying bacteria to perform denitrification, which made a nonnegligible contribution to the removal of nitrogen.


Asunto(s)
Desnitrificación , Aguas Residuales , Antibacterianos , Biopelículas , Reactores Biológicos , Electrodos , Nitratos/análisis , Nitrógeno/análisis , Aguas Residuales/química
5.
J Environ Manage ; 312: 114920, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35358845

RESUMEN

Endogenous partial denitrification (EPD) and denitrifying phosphorous removal (DPR) were combined in a novel A2/O - MBBR (Anaerobic Anoxic Oxic - Moving Bed Biofilm Reactor) system for low carbon/nitrogen (C/N) ratio wastewater treatment. The DPR performance was compared and the nutrient metabolism was elucidated based on the optimization of hydraulic retention time (HRT, 4-12 h) and nitrate recycling (R, 200%-600%). In the continuous-flow, the nitrate (NO3-) denitrification accompanied by nitrite (NO2-, via EPD) accumulation with the nitrate-to-nitrite transformation ratio (NTR) of 35.87%-43.31% in the anoxic zones. At HRT of 12 h with R of 500%, batch test initially revealed the DPR mechanism using both NO3- and NO2- as electron acceptor, where denitrifying phosphorus accumulation organisms (DPAOs) and denitrifying glycogen accumulation organisms (DGAOs) were the main contributors for EPD with incomplete denitrification (NO3- → NO2-). Furthermore, stoichiometry-based functional bacteria analysis displayed that higher bioactivity of DPAOs (NO2-→N2, 57.30%; NO3-→N2, 35.85%) over DGAOs (NO3-→N2, 6.85%) facilitated the anoxic NO3- reduction. Microbial community analysis suggested that Cluster I of Defluviicoccus-GAO group (∼4%) was responsible for stable NO2- accumulation performance via EPD, while increased Accumulibacter-PAO group (by ∼15%) contributed to the advanced nutrient removal. Based on the achievement of NO2- accumulation, the application feasibility of integrated EPD - DPR - Anammox for deep-level nutrient removal was discussed.


Asunto(s)
Nitrógeno , Purificación del Agua , Biopelículas , Reactores Biológicos , Carbono , Desnitrificación , Nitratos , Nitritos , Dióxido de Nitrógeno , Fósforo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
6.
Bioresour Technol ; 363: 127890, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36075347

RESUMEN

Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.


Asunto(s)
Compuestos de Amonio , Contaminantes Ambientales , Reactores Biológicos , Carbono , Desnitrificación , Electrones , Hidrógeno , Hierro , Nitratos , Nitrógeno , Óxidos de Nitrógeno , Compuestos de Azufre , Aguas Residuales , Agua
7.
Sci Total Environ ; 829: 154682, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35307420

RESUMEN

Heterotrophic-autotrophic denitrification reduces the cost of wastewater treatment and the risk of excess chemical oxygen demanded (COD) in the effluent. A mixotrophic denitrification system involving mixed heterotrophic and ferrous autotrophic bacteria was investigated to treat low-C/N ratio (C/N, defined as chemical oxygen demand (COD)/total nitrogen (TN)) wastewater with pyrite and organic carbon as electron donors. The system yielded effluent total nitrogen (TN) of 0.38 mg/L in 48 h due to a synergistic effect when the C/N ratio was 0.5 and influent nitrate nitrogen (NO3--N) was 20 mg/L; this TN value was significantly lower than those of the heterotrophic system (14.08 mg/L) and ferrous autotrophic system (12.00 mg/L). The highest abundance of the narG gene was observed in the mixotrophic denitrification system, along with more abundant microbial species. The dominant denitrification bacteria in each system included Thaurea, Ferritrophicum, Pseudomonas, and Thiobacillus, which varied with the initial inoculum source and the environment. Nevertheless, the abundance of the heterotrophic bacteria Thaurea decreased with prolonged operation of the systems. Together, these results implied that the simultaneous heterotrophic and FeS2-based ferrous autotrophic denitrification process can be an alternative approach for the treatment of low-C/N ratio wastewater.


Asunto(s)
Microbiota , Aguas Residuales , Bacterias/genética , Reactores Biológicos/microbiología , Desnitrificación/genética , Nitratos , Nitrógeno , Aguas Residuales/microbiología
8.
Bioresour Technol ; 351: 126975, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35276374

RESUMEN

In this study, a combined corncob-based fixed bed bioreactor and sequencing batch reactor system (CCF-SBR) was developed to treat low-temperature (3-12 °C) and low carbon/nitrogen ratio (C/N = 2) wastewater with a single SBR as the control. Results showed similarly low COD concentration of CCF-SBR (20.4 ± 3.7 mg·L-1) and control SBR (24.9 ± 6.7 mg·L-1) effluent. However, the total nitrogen (TN) removal rate of CCF-SBR was significantly higher than that of control SBR (29.6 ± 2.7% vs 8.6 ± 2.3%). According to the nitrification and denitrification activities and the analysis of microbial community, CCF mainly played the role of denitrification based on fermentation genera and denitrifying genera, and SBR mainly implemented nitrification with Nitrospira and Acinetobacter. This study explores a promising way for agricultural waste resource utilization and wastewater treatment under low-temperature and low C/N ratio.


Asunto(s)
Nitrógeno , Aguas Residuales , Reactores Biológicos , Carbono , Desnitrificación , Nitrificación , Nitrógeno/análisis , Temperatura , Eliminación de Residuos Líquidos/métodos , Zea mays
9.
Chemosphere ; 288(Pt 2): 132567, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34653477

RESUMEN

Low carbon/nitrogen ratio (C/N) wastewater is widespread and difficult to treat. To find a resolution to this issue, this study systematically evaluated the constituents of composite solid carbon (i.e., skeletons, carbon sources and crosslinking agents), and proposed a new multi-carbon source composite S1 (MCSC.S1). The effects on nitrogen removal were further determined through a sequencing batch moving bed biofilm reactor (SBMBBR). The results showed that MCSC.S1, which was composed of polyvinyl alcohol-sodium alginate (PVA-SA), corncob + poly (R-ß-hydroxybutyrate) (CC + PHB), and H3BO3-4% CaCl2+Na2SO4 had high stability and absorption. With MCSC.S1, total nitrification removal was enhanced by more than 48.56% through releasing carbon and absorbing the attached denitrifying bacteria. In addition, it was found that MCSC.S1 can simulate the simultaneous nitrification and denitrification (SND) process and contribute to 29.85% of the total nitrogen removal. 16S gene-based analysis attributed this supplementary nitrogen removal to the enrichment of nitrification (i.e., Proteobacteria, Actinobacteria and Chloroflexi), denitrification of associated bacteria (i.e., Nitrospirota) in MCSC.S1 added reactor, and the increase in nitrogen recycling associated genes. These findings collectively demonstrate that the new MCSC.S1 could effectively enhance nitrogen removal efficiency in low C/N ratio wastewater.


Asunto(s)
Nitrificación , Aguas Residuales , Carbono , Desnitrificación , Nitrógeno
10.
Chemosphere ; 299: 134376, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35358555

RESUMEN

In view of the difficulty in denitrification of low C/N ratio wastewater, electrochemical technology with multiple electrodes and tidal flow method via siphon aeration were used to enhance the denitrification process. At the same time, because of the low phosphorus removal efficiency in traditional activated sludge process, the constructed wetland and microbial fuel cell (CW-MFC) reactor with dewatered alum sludge (DAS) as substrate were constructed. In addition, the REDOX conditions of the reactor were changed by siphon, which significantly improved the removal efficiency of N and P and the energy recovery capacity of the reactor. In the 172 d, the Tidal Flow Constructed Wetland-Microbial Fuel Cell (TF CW-MFC) had the highest removal efficiency of COD and total nitrogen (TN), which were 97.4% and 83.4%, respectively. Although the removal rate of total phosphorus (TP) by TF CW-MFC was lower than artificial aeration, it can still reached 89.0%. The removal effect of aromatic protein substances in water was also significant. The amount of electrons generated by the artificial aeration anode and the amount of oxygen generated by the cathode were not enough to match. The voltage of TF CW-MFC was significantly higher than artificial aeration, around 350 mV, and the maximum power density was 98.16 mW m-3. In addition, MFC had an inhibitory effect on CW methane emissions. The analysis of the microbial community structure showed that most of the dominant bacteria of TF CW-MFC belonged to the Proteobacteria, Actinobacteria and Chloroflexi. These results showed that the TF CW-MFC technology as a zero-energy oxygen supply mode had high efficiency in the treatment of low C/N ratio wastewater and also had the environmental effect of reducing methane emissions. This study suggests that this green wastewater treatment technology has potential application value.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas del Alcantarillado , Desnitrificación , Electrodos , Metano , Nitrógeno , Oxígeno , Fósforo , Tecnología , Aguas Residuales/química , Humedales
11.
Sci Total Environ ; 788: 147652, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34023598

RESUMEN

Air-cathode microbial fuel cells (ACMFCs) can extract available electrons from the low C/N ratio wastewater (LCNW) for pollutant degradation and power generation. However, the multiple effects of operating parameters and their relationship between the performances and parameters are still lacking. In this study, several ACMFCs for simultaneous nitritation/denitritation (SND) and energy recovery were constructed and evaluated in terms of chemical oxygen demand (COD), NH4+-N, C/N ratio, phosphate buffer solution (PBS), and external resistance (Rext), and several derived parameters (e.g., organic loading rate (OLR), nitrogen loading rate (NLR)). Results indicated that ACMFCs could be used to treat LCNW successfully with high pollutant removal rates and sustainable current generation. Maximum removal efficiencies of 94% COD, 92% NH4+-N, and 92% total nitrogen (TN) were achieved. A maximum power density of 1400 mW m-2 and columbic efficiency of 69.2% were also obtained at a low C/N ratio of 1.7-2.6. Low C/N ratios promoted SND by balancing nitritation and denitritation. The microbial community and their predicated function results showed considerable nitrifiers and denitrificans were enriched in the ACMFCs, contributing to SND and power recovery. Further analyses showed that the NH4+-N could inhibit SND, but PBS and Rext had no obvious effects on this outcome. Co-occurrence network analysis demonstrated that power is positively correlated with COD and Rext; strong correlations between organic removal and COD, and between nitrogen removal and ammonia, conductivity, and C/N ratio were also noted. Overall, the appropriate control of such parameters is necessary to achieve efficient SND in ACMFCs for LCNW treatment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Desnitrificación , Electrodos , Nitrógeno
12.
Water Res ; 189: 116576, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33161328

RESUMEN

In this study, a combined alkaline (ALK) and ultrasonication (ULS) sludge lysis-cryptic pretreatment and anoxic/oxic (AO) system (AO + ALK/ULS) was developed to enhance biological nitrogen removal (BNR) in domestic wastewater with a low carbon/nitrogen (C/N) ratio. A real-time control strategy for the AO + ALK/ULS system was designed to optimize the sludge lysate return ratio (RSLR) under variable sludge concentrations and variations in the influent C/N (⩽ 5). A multi-layered backpropagation artificial neural network (BPANN) model with network topology of 1 input layer, 3 hidden layers, and 1 output layer, using the Levenberg-Marquardt algorithm, was developed and validated. Experimental and predicted data showed significant concurrence, verified with a high regression coefficient (R2 = 0.9513) and accuracy of the BPANN. The BPANN model effectively captured the complex nonlinear relationships between the related input variables and effluent output in the combined lysis-cryptic + BNR system. The model could be used to support the real-time dynamic response and process optimization control to treat low C/N domestic wastewater.


Asunto(s)
Nitrógeno , Aguas Residuales , Reactores Biológicos , Carbono , Desnitrificación , Redes Neurales de la Computación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
13.
Huan Jing Ke Xue ; 40(3): 1419-1425, 2019 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-31087993

RESUMEN

A system that combines an ion exchange membrane and ultrafiltration membrane (IEM-UF) to form a simultaneous separation and denitrification system was proposed for domestic sewage with a low carbon/nitrogen ratio. The removal of nitrogen and COD in the system was studied under a three phase operating condition. The characteristics of the microbial community in each reactor were analyzed using metagenomics. The results show that, the average rate of ammonia nitrogen enrichment in the separator reached above 116.1% when the current intensity was 0.2 A. When the system was at C/N 2.80 and operating well, the average removal rates of COD and TN reached above 90% and 50%, respectively. The maximum removal rate of TN was above 65.4%. The results of metagenomics showed a genus of phylum Nitrospirae (Nitrospira) and a genus of phylum Proteobacteria (Nitrosomonas), with the proportions of 12.23% and 2.31%, respectively. In the denitrifying reactor, Dechloromonas, Thauera, and Azospira were detected in the proportions 4.57%, 1.76%, and 1.03%, respectively. These proportions were far larger than those of other bacteria in this reactor. Meanwhile, the presence of iron autotrophic denitrifying bacteria increased the denitrification efficiency of the system.


Asunto(s)
Desnitrificación , Microbiota , Nitrógeno/aislamiento & purificación , Bacterias/clasificación , Reactores Biológicos , Intercambio Iónico , Ultrafiltración , Aguas Residuales
14.
Bioresour Technol ; 256: 557-561, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29454626

RESUMEN

This study aims to explore the potential of low-concentration of rhamnolipid in efficient treatment of wastewater with poor biodegradability. Six lab-scale moving bed biofilm reactors (MBBRs) were applied to investigate the effect of rhamnolipid concentration (0, 20, 50 mg/L) on pollutants removal, biomass accumulation, microbial morphology and community evolution in synthetic low C/N ratio (3:1) and antibiotic (50 µg/L tetracycline) wastewater. 20 mg/L rhamnolipid treated groups exhibited significant increase (p < 0.05) of chemical oxygen demand (COD) removal and volatile solid (VS) content in both synthetic wastewater. Hydrogenophaga and Aeromonas were dominant in all reactors in which Aeromonas was positively correlated with the removal of COD and ammonia nitrogen (NH4+-N). Besides, Methyloversatilis became dominant only in 20 mg/L rhamnolipid treated groups and was positively correlated with VS. This study provides a novel and feasible strategy for treating poorly biodegradable wastewater by biofilm process with moderate amount of rhamnolipid.


Asunto(s)
Antibacterianos , Glucolípidos , Biopelículas , Reactores Biológicos , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA