Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant J ; 117(1): 107-120, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37753665

RESUMEN

Black pepper (Piper nigrum L.), the world renown as the King of Spices, is not only a flavorsome spice but also a traditional herb. Piperine, a species-specific piper amide, is responsible for the major bioactivity and pungent flavor of black pepper. However, several key steps for the biosynthesis of piperoyl-CoA (acyl-donor) and piperidine (acyl-acceptor), two direct precursors for piperine, remain unknown. In this study, we used guilt-by-association analysis of the combined metabolome and transcriptome, to identify two feruloyldiketide-CoA synthases responsible for the production of the C5 side chain scaffold feruloyldiketide-CoA intermediate, which is considered the first and important step to branch metabolic fluxes from phenylpropanoid pathway to piperine biosynthesis. In addition, we also identified the first two key enzymes for piperidine biosynthesis derived from lysine in P. nigrum, namely a lysine decarboxylase and a copper amine oxidase. These enzymes catalyze the production of cadaverine and 1-piperideine, the precursors of piperidine. In vivo and in vitro experiments verified the catalytic capability of them. In conclusion, our findings revealed enigmatic key steps of piperine biosynthetic pathway and thus provide a powerful reference for dissecting the biosynthetic logic of other piper amides.


Asunto(s)
Piper nigrum , Piper nigrum/genética , Alcamidas Poliinsaturadas , Piperidinas , Perfilación de la Expresión Génica , Metaboloma
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372137

RESUMEN

Pathogenic and commensal bacteria often have to resist the harsh acidity of the host stomach. The inducible lysine decarboxylase LdcI buffers the cytosol and the local extracellular environment to ensure enterobacterial survival at low pH. Here, we investigate the acid stress-response regulation of Escherichia coli LdcI by combining biochemical and biophysical characterization with negative stain and cryoelectron microscopy (cryo-EM) and wide-field and superresolution fluorescence imaging. Due to deleterious effects of fluorescent protein fusions on native LdcI decamers, we opt for three-dimensional localization of nanobody-labeled endogenous wild-type LdcI in acid-stressed E. coli cells and show that it organizes into distinct patches at the cell periphery. Consistent with recent hypotheses that in vivo clustering of metabolic enzymes often reflects their polymerization as a means of stimulus-induced regulation, we show that LdcI assembles into filaments in vitro at physiologically relevant low pH. We solve the structures of these filaments and of the LdcI decamer formed at neutral pH by cryo-EM and reveal the molecular determinants of LdcI polymerization, confirmed by mutational analysis. Finally, we propose a model for LdcI function inside the enterobacterial cell, providing a structural and mechanistic basis for further investigation of the role of its supramolecular organization in the acid stress response.


Asunto(s)
Carboxiliasas/metabolismo , Microscopía Fluorescente/métodos , Estrés Fisiológico/fisiología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos/genética , Carboxiliasas/fisiología , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Unión Proteica/genética , Multimerización de Proteína/genética
3.
Biotechnol Bioeng ; 120(1): 272-283, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271696

RESUMEN

Pyridoxal 5'-phosphate (pyridoxal phosphate, PLP) is an essential cofactor for multiple enzymatic reactions in industry. However, cofactor engineering based on PLP regeneration and related to the performance of enzymes in chemical production has rarely been discussed. First, we found that MG1655 strain was sensitive to nitrogen source and relied on different amino acids, thus the biomass was significantly reduced when PLP excess in the medium. Then, the six KEIO collection strains were applied to find out the prominent gene in deoxyxylulose-5-phosphate (DXP) pathway, where pdxB was superior in controlling cell growth. Therefore, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeted on pdxB in MG1655 was employed to establish a novel direct enzymatic evaluation platform (DEEP) as a high-throughput tool and obtained the optimal modules for incorporating of PLP to enhance the biomass and activity of PLP-dependent enzymes simultaneously. As a result, the biomass has increased by 55% using PlacI promoter driven pyridoxine 5'-phosphate oxidase (PdxH) with a trace amount of precursor. When the strains incorporated DEEP and lysine decarboxylase (CadA), the cadaverine productivity was increased 32% due to the higher expression of CadA. DEEP is not only feasible for high-throughput screening of the best chassis for PLP engineering but also practical in fine-tuning the quantity and quality of enzymes.


Asunto(s)
Deshidrogenasas de Carbohidratos , Proteínas de Escherichia coli , Cadaverina/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Escherichia coli/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fosfatos/metabolismo , Proteínas de Escherichia coli/genética
4.
Trends Biochem Sci ; 43(4): 232-236, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29525484

RESUMEN

A conserved PGGxGTxxE motif misleads the cytokinin (CK) converting LONELY GUY enzymes to be wrongly annotated as lysine decarboxylases (LDCs). However, so far PGGxGTxxE motif-containing LDCs do not show any LDC activity. Instead, they show phosphoribohydrolase activity by converting inactive CK nucleotides into active free-base forms to invoke CK responses.


Asunto(s)
Carboxiliasas , Citocininas/metabolismo , Hidrolasas/metabolismo , Carboxiliasas/metabolismo , Humanos
5.
Microb Cell Fact ; 21(1): 142, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842631

RESUMEN

BACKGROUND: 1,5-Diamino-2-hydroxy-pentane (2-OH-PDA), as a new type of aliphatic amino alcohol, has potential applications in the pharmaceutical, chemical, and materials industries. Currently, 2-OH-PDA production has only been realized via pure enzyme catalysis from lysine hydroxylation and decarboxylation, which faces great challenges for scale-up production. However, the use of a cell factory is very promising for the production of 2-OH-PDA for industrial applications, but the substrate transport rate, appropriate catalytic environment (pH, temperature, ions) and separation method restrict its efficient synthesis. Here, a strategy was developed to produce 2-OH-PDA via an efficient, green and sustainable biosynthetic method on an industrial scale. RESULTS: In this study, an approach was created for efficient 2-OH-PDA production from L-lysine using engineered E. coli BL21 (DE3) cell catalysis by a two-stage hydroxylation and decarboxylation process. In the hydroxylation stage, strain B14 coexpressing L-lysine 3-hydroxylase K3H and the lysine transporter CadB-argT enhanced the biosynthesis of (2S,3S)-3-hydroxylysine (hydroxylysine) compared with strain B1 overexpressing K3H. The titre of hydroxylysine synthesized by B14 was 2.1 times higher than that synthesized by B1. Then, in the decarboxylation stage, CadA showed the highest hydroxylysine activity among the four decarboxylases investigated. Based on the results from three feeding strategies, L-lysine was employed to produce 110.5 g/L hydroxylysine, which was subsequently decarboxylated to generate a 2-OH-PDA titre of 80.5 g/L with 62.6% molar yield in a 5-L fermenter. In addition, 2-OH-PDA with 95.6% purity was obtained by solid-phase extraction. Thus, the proposed two-stage whole-cell biocatalysis approach is a green and effective method for producing 2-OH-PDA on an industrial scale. CONCLUSIONS: The whole-cell catalytic system showed a sufficiently high capability to convert lysine into 2-OH-PDA. Furthermore, the high titre of 2-OH-PDA is conducive to separation and possesses the prospect of industrial scale production by whole-cell catalysis.


Asunto(s)
Escherichia coli , Lisina , Biocatálisis , Escherichia coli/metabolismo , Hidroxilisina , Lisina/metabolismo , Pentanos
6.
Molecules ; 26(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572696

RESUMEN

Inducible lysine decarboxylases (LDCs) are essential in various cellular processes of microorganisms and plants, especially under acid stress, which induces the expression of genes encoding LDCs. In this study, a novel Serratia marcesenes LDC (SmcadA) was successfully expressed in E. coli, purified and characterized. The protein had an optimal pH of 6 and a temperature of 40 °C and phylogenetic analysis to determine the evolution of SmcadA, which revealed a close relation to Enterobacteriaceae, Klebsiella sp., among others. The molecular weight of SmcadA was approximately 75 kDa after observation on SDS-PAGE and structural modeling showed the protein as a decamer, comprised of five interlinked dimers. The biocatalytic activity of the purified wild-type SmcadA (WT) was improved through site directed mutations and the results showed that the Arg595Lys mutant had the highest specific activity of 286.55 U/mg, while the Ser512Ala variant and wild-type SmcadA had 215.72 and 179.01 U/mg, respectively. Furthermore, molecular dynamics simulations revealed that interactions through hydrogen bonds between the protein residues and cofactor pyridoxal-5-phosphate (PLP) are vital for biocatalysis. Molecular Dynamics (MD) simulations also indicated that mutations conferred structural changes on protein residues and PLP hence altered the interacting residues with the cofactor, subsequently influencing substrate bioconversion. Moreover, the temperature also induced changes in orientation of cofactor PLP and amino acid residues. This work therefore demonstrates the successful expression and characterization of the purified novel lysine decarboxylase from Serratia marcesenes and provided insight into the mechanism of protein-cofactor interactions, highlighting the role of protein-ligand interactions in altering cofactor and binding site residue conformations, thus contributing to improved biocatalysis.


Asunto(s)
Carboxiliasas/química , Conformación Proteica , Serratia marcescens/enzimología , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Biocatálisis , Carboxiliasas/genética , Carboxiliasas/ultraestructura , Dominio Catalítico/genética , Escherichia coli/genética , Simulación de Dinámica Molecular , Serratia marcescens/química , Serratia marcescens/ultraestructura , Especificidad por Sustrato
7.
Plant J ; 100(3): 505-521, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31364191

RESUMEN

Lysine decarboxylase converts l-lysine to cadaverine as a branching point for the biosynthesis of plant Lys-derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys-derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La-L/ODC) and identified cadaverine-derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys-derived alkaloids in the transgenic lines. Moreover, we found several cadaverine-derived metabolites specifically detected in the transgenic lines compared with the non-transformed control. Among these, three specific metabolites were identified and confirmed as 5-aminopentanal, 5-aminopentanoate and δ-valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope-labeled [α-15 N]- or [ε-15 N]-l-lysine. Our results show similar 15 N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys-derived alkaloid biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Cadaverina/metabolismo , Carboxiliasas/metabolismo , Lupinus/enzimología , Metaboloma , Nitrógeno/metabolismo , Alcaloides/metabolismo , Arabidopsis/genética , Vías Biosintéticas , Carboxiliasas/genética , Expresión Génica , Lupinus/genética , Lisina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transgenes
8.
Arch Biochem Biophys ; 689: 108429, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32479762

RESUMEN

Lysine is a precursor for desferrioxamine siderophore biosynthesis. The pathway is often initiated by lysine decarboxylases. However, little is known about those enzymes from Actinobacteria which represents a diverse class of desferrioxamine producers. In this study we focused on the genes grdesA form Gordonia rubripertincta CWB2 and psdesA from Pimelobacter simplex VkMAC-2033D that encode decarboxylases presumed to be involved in the synthesis of desferrioxamine siderophores. The corresponding proteins GrDesA and PsDesA, were heterologously produced in Escherichia coli and purified. PsDesA was isolated bound to the cofactor pyridoxal 5-phosphate and GrDesA was purified in its apo form. PsDesA showed a moderate substrate preference for lysine (Km = 0.17 mM, kcat = 0.26 s-1) compared to ornithine (Km = 0.13 mM, kcat = 0.14 s-1), while GrDesA exhibited specificity for lysine (Km = 0.13 mM, kcat = 1.2 s-1) compared to ornithine (Km = 2.9 mM, kcat = 0.18 s-1). The maximum decarboxylase activity of PsDesA was achieved at pH 7.5 at 35 °C, although PsDesA was stable up to 40°, its relative activity decreased significantly at 50 °C. The temperature optimum (40 °C) and thermostability of GrDesA were likewise, but it exhibited maximum activity at pH range 8.0-8.5, and sharply decreased outside of this range. The expression and characterization of these two decarboxylases provides insight into the biosynthetic pathway of desferrioxamines from G.rubripertincta and P. simplex and supports the functional annotation of related pathways.


Asunto(s)
Actinobacteria/enzimología , Carboxiliasas/metabolismo , Deferoxamina/metabolismo , Ornitina Descarboxilasa/metabolismo , Sideróforos/metabolismo , Actinobacteria/metabolismo , Vías Biosintéticas , Especificidad por Sustrato
9.
Anal Biochem ; 584: 113335, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176610

RESUMEN

l-Lysine is an essential amino acid important for maintaining human health. To date, many enzymatic methods for assay of l-lysine have been developed. The first method has been developed using l-lysine α-oxidase (l-LysOα). However, low specificity towards l-lysine of l-LysOα is a disadvantage inherent in this method. Recently, methods more specific to l-lysine were developed using newly discovered enzymes such as l-lysine ε-oxidase (l-LysOε), l-amino acid oxidase/monooxygenase (l-AAO/MOG) and l-lysine decarboxylase/oxidase (l-Lys-DC/OD). The present paper reviews recent enzymatic methods used for assay of l-lysine. These l-lysine selective assays rely on detecting and quantifying hydrogen peroxide, a product generated by the oxidase reaction of these enzymes. l-LysOε catalyzes the oxidative deamination of the ε-amino group of l-lysine, thus assays using this enzyme are more specific towards l-lysine than the ones using l-LysOα. The l-AAO/MOG has high substrate specificity towards l-lysine; however it exhibits l-lysine oxidase and monooxygenase activities. The sensitivity of l-AAO/MOG method was improved either by using its mutant, which has reduced monooxygenase activity, or by coupling with an aminoamide-oxidizing enzyme. The l-Lys-DC/OD exhibits both l-lysine decarboxylase and oxidase activities. The sensitivity of the l-Lys-DC/OD method was improved by using putrescine oxidase to oxidize the decarboxylation product of l-lysine.


Asunto(s)
Técnicas Biosensibles/métodos , Lisina/análisis , Oxidorreductasas/metabolismo , Bacterias/enzimología , Lisina/metabolismo
10.
Biotechnol Bioeng ; 116(2): 250-259, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30414290

RESUMEN

A key point of protein stability engineering is to identify specific target residues whose mutations can stabilize the protein structure without negatively affecting the function or activity of the protein. Here, we propose a method called RiSLnet (Rapid identification of Smart mutant Library using residue network) to identify such residues by combining network analysis for protein residue interactions, identification of conserved residues, and evaluation of relative solvent accessibility. To validate its performance, the method was applied to four proteins, that is, T4 lysozyme, ribonuclease H, barnase, and cold shock protein B. Our method predicted beneficial mutations in thermal stability with ~62% average accuracy when the thermal stability of the mutants was compared with the ones in the Protherm database. It was further applied to lysine decarboxylase (CadA) to experimentally confirm its accuracy and effectiveness. RiSLnet identified mutations increasing the thermal stability of CadA with the accuracy of ~60% and significantly reduced the number of candidate residues (~99%) for mutation. Finally, combinatorial mutations designed by RiSLnet and in silico saturation mutagenesis yielded a thermally stable triple mutant with the half-life (T 1/2 ) of 114.9 min at 58°C, which is approximately twofold higher than that of the wild-type.


Asunto(s)
Biología Computacional/métodos , Pruebas Genéticas/métodos , Calor , Proteínas Mutantes/química , Estabilidad Proteica , Proteínas Mutantes/genética , Factores de Tiempo
11.
Protein Expr Purif ; 151: 30-37, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29894803

RESUMEN

1-Deoxynojirimycin (DNJ) is the main bioactive compound of Morus alba L.. DNJ has pharmacological effects, including blood sugar level regulation and antiviral activity. In this study, the mulberry lysine decarboxylase gene (MaLDC), which is involved in the biosynthesis of DNJ alkaloids, was cloned, expressed, and functionally verified. MaLDC was induced and expressed in Escherichia coli BL21 (DE3). The recombinant soluble MaLDC protein had a relative molecular mass of 24.0 kDa. The protein was purified by Ni-NTA separation. The results showed that MaLDC protein could catalyze lysine decarboxylation to produce cadaverine. The Km and Vmax values were 19.2 µM and 3.31 µM/min, respectively. Quantitative real-time reverse transcription polymerase chain reaction revealed that MaLDC expression was positively correlated with DNJ content (P < 0.001), indicating that the MaLDC could encode a functional protein involved in the biosynthesis of DNJ alkaloid in mulberry. Our results provided a foundation for further studies of the enzymatic properties of LDC and established a basis for the analysis of key enzymes involved in the biosynthetic pathway of mulberry DNJ alkaloid.


Asunto(s)
Carboxiliasas/biosíntesis , Morus/enzimología , Proteínas de Plantas/biosíntesis , 1-Desoxinojirimicina/metabolismo , Cadaverina/metabolismo , Carboxiliasas/química , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Hojas de la Planta/enzimología , Proteínas de Plantas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
12.
Biotechnol Lett ; 40(4): 719-727, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29349625

RESUMEN

OBJECTIVE: To enhance the thermal and alkaline pH stability of the lysine decarboxylase from Escherichia coli (CadA) by engineering the decameric interface and explore its potential for industrial applications. RESULTS: The mutant T88S was designed for improved structural stability by computational analysis. The optimal pH and temperature of T88S were 7.0 and 55 °C (5.5 and 50 °C for wild-type). T88S showed higher thermostability with a 2.9-fold increase in the half-life at 70 °C (from 11 to 32 min) and increased melting temperature (from 76 to 78 °C). Additionally, the specific activity and pH stability (residual activity after 10 h incubation) of T88S at pH 8.0 were increased to 164 U/mg and 78% (58 U/mg and 57% for wild-type). The productivity of cadaverine with T88S (284 g L-lysine L-1 and 5 g DCW L-1) was 40 g L-1 h-1, in contrast to 28 g L-1 h-1 with wild-type. CONCLUSION: The mutant T88S showed high thermostability, pH stability, and activity at alkaline pH, indicating that this mutant is a promising biocatalyst for industrial production of cadaverine.


Asunto(s)
Cadaverina/biosíntesis , Carboxiliasas/química , Escherichia coli/enzimología , Ingeniería Genética , Cadaverina/química , Carboxiliasas/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Mutación
13.
Bull Entomol Res ; 108(1): 69-76, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28514972

RESUMEN

Tetraneura ulmi (L.), a member of Eriosomatinae subfamily, is one of the gall-forming aphids occurring on elms. Sap-sucking behaviour of founding mothers results in the formation of new plant organs. This study documents the changes in the content of plant biogenic amines (putrescine, cadaverine, spermidine, tryptamine, spermine and histamine) and key enzymes of their biosynthesis: lysine decarboxylase (LDC), tyrosine decarboxylase and ornithine decarboxylase (ODC) in galls and other parts of Siberian elm (Ulmus pumila L.) leaves during the galling process. The direction and intensity of these changes for particular amines and enzymes were dependent on the stage of gall development and part of the galling leaf. Generally, the amine content tended to increase in gall tissues during the 1st and 2nd period of the galling process and decreased in later phases. LDC and ODC activities were markedly enhanced, especially in gall tissues at the initial stage of the galling process.


Asunto(s)
Áfidos/fisiología , Ulmus/parasitología , Animales , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Aminas Biogénicas/metabolismo , Tumores de Planta/parasitología , Ulmus/metabolismo
14.
Zhongguo Zhong Yao Za Zhi ; 42(10): 1853-1859, 2017 May.
Artículo en Zh | MEDLINE | ID: mdl-29090542

RESUMEN

Establishing the genetic transformation system of medicinal plant is important to study their functional genes. Based on the established regeneration system of Sophra alopecuroides, 6 factors of genetic transformation were optimized, that was the concentration of Agrobacterium tumefaciens, the infection time, the co-cultivation time of agrobacterium tumefaciensand S.alopecuroides callus, the preculture time of S.alopecuroides callus, the adding method ofacetosyringone (AS) and the concentration of AS, respectively. The results showed that a maximum genetic transformation efficiency of 83.33% was achieved with 15d-precultured of S.alopecuroides callus, which was infected by A600=0.9 A. tumefaciens for 15 minutes and then co-cultivated for 48 hours with 200 µmol•L-1AS. The promoter sequence (1 260 bp) of upstream SaLDC was cloned from S.alopecuroides genomic DNA (gene bank accession number: KY038928). The deletion fragment of SaLDC promoter with different length (310,594,765,924,1 260 bp) were ligated with the GUS reporter gene to form five plant expression vectors named P310,P594,P765,P924,P1260, which were then transferred into S.alopecuroides callus. The GUS transient expression showed that all 5 different deletion fragment of SaLDC promoter can drive the GUS gene expression in S. alopecuroides callus. The SaLDC promoter we cloned has high promoter activity, and they may facilitate its function analysis in the future.


Asunto(s)
Glucuronidasa/genética , Regiones Promotoras Genéticas , Sophora/genética , Transformación Genética , Acetofenonas , Agrobacterium tumefaciens , Genes Reporteros , Vectores Genéticos , Plantas Modificadas Genéticamente , Plantas Medicinales/genética , Técnicas de Cultivo de Tejidos
15.
Proteins ; 83(8): 1539-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26010010

RESUMEN

The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function.


Asunto(s)
Aminohidrolasas/química , Carboxiliasas/química , Claviceps/enzimología , Proteínas Fúngicas/química , Modelos Moleculares , Secuencia de Aminoácidos , Aminohidrolasas/metabolismo , Carboxiliasas/metabolismo , Citocininas/metabolismo , Proteínas Fúngicas/metabolismo
16.
Methods Enzymol ; 702: 121-145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39155108

RESUMEN

Siderophores are low-molecular-weight organic bacterial and fungal secondary metabolites that form high affinity complexes with Fe(III). These Fe(III)-siderophore complexes are part of the siderophore-mediated Fe(III) uptake mechanism, which is the most widespread strategy used by microbes to access sufficient iron for growth. Microbial competition for limited iron is met by biosynthetic gene clusters that encode for the biosynthesis of siderophores with variable molecular scaffolds and iron binding motifs. Some classes of siderophores have well understood biosynthetic pathways, which opens opportunities to further expand structural and property diversity using precursor-directed biosynthesis (PDB). PDB involves augmenting culture medium with non-native substrates to compete against native substrates during metabolite assembly. This chapter provides background information and technical details of conducting a PDB experiment towards producing a range of different analogues of the archetypal hydroxamic acid siderophore desferrioxamine B. This includes processes to semi-purify the culture supernatant and the use of liquid chromatography-tandem mass spectrometry for downstream analysis of analogues and groups of constitutional isomers.


Asunto(s)
Sideróforos , Sideróforos/biosíntesis , Sideróforos/química , Sideróforos/metabolismo , Espectrometría de Masas en Tándem/métodos , Deferoxamina/metabolismo , Deferoxamina/química , Cromatografía Liquida/métodos , Vías Biosintéticas , Familia de Multigenes , Hierro/metabolismo , Hierro/química , Medios de Cultivo/química , Medios de Cultivo/metabolismo
17.
Carbohydr Polym ; 321: 121322, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739544

RESUMEN

In this study, co-immobilization of PLP and its dependent enzyme were investigated using a novel type of porous chitin bead (PCB). Crayfish shell was used to prepare PCB via dissolution of it to form beads, followed by the removal of CaCO3 and protein in-situ. Scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller method showed that the PCB had abundant porous structures with deacetylation degree of 33 % and the specific surface area of 35.87 m2/g. Then, the beads are used to co-immobilize pyridoxal 5-phosphate (PLP) and l-lysine decarboxylase fused with chitin-binding protein (SpLDC-ChBD). Laser scanning confocal microscopy revealed that the beads could co-immobilize PLP and SpLDC-ChBD successfully. In addition, a packed bed was also constructed using the PCB containing co-immobilized SpLDC-ChBD and PLP. The substrate conversion remained at 91.09 % after 48 h with 50 g/L l-lysine, which showed good continuous catalysis ability. This study provides a novel method for co-immobilization of enzyme and PLP, as well as develops a new application of waste crustacean shells.


Asunto(s)
Astacoidea , Quitina , Animales , Fosfato de Piridoxal , Porosidad , Catálisis
18.
ACS Synth Biol ; 12(5): 1474-1486, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37071041

RESUMEN

Although recent advances in deep learning approaches for protein engineering have enabled quick prediction of hot spot residues improving protein solubility, the predictions do not always correspond to an actual increase in solubility under experimental conditions. Therefore, developing methods that rapidly confirm the linkage between computational predictions and empirical results is essential to the success of improving protein solubility of target proteins. Here, we present a simple hybrid approach to computationally predict hot spots possibly improving protein solubility by sequence-based analysis and empirically explore valuable mutants using split GFP as a reporter system. Our approach, Consensus design Soluble Mutant Screening (ConsenSing), utilizes consensus sequence prediction to find hot spots for improvement of protein solubility and constructs a mutant library using Darwin assembly to cover all possible mutations in one pot but still keeps the library as compact as possible. This approach allowed us to identify multiple mutants of Escherichia coli lysine decarboxylase, LdcC, with substantial increases in soluble expression. Further investigation led us to pinpoint a single critical residue for the soluble expression of LdcC and unveiled its mechanism for such improvement. Our approach demonstrated that following a protein's natural evolutionary path provides insights to improve protein solubility and/or increase protein expression by a single residue mutation, which can significantly change the profile of protein solubility.


Asunto(s)
Carboxiliasas , Proteínas Fluorescentes Verdes/metabolismo , Carboxiliasas/genética , Ingeniería de Proteínas/métodos , Biblioteca de Genes
19.
Appl Biochem Biotechnol ; 194(2): 1013-1024, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34529230

RESUMEN

In this study, the response regulator DR1558 from Deinococcus radiodurans was overexpressed in recombinant Corynebacterium glutamicum with lysine decarboxylase (ldcC). The recombinant C. glutamicum strain overexpressing dr1558 and ldcC produced 5.9 g/L of cadaverine by flask cultivation, whereas the control strain overexpressing only ldcC produced 4.5 g/L of cadaverine. To investigate the mechanism underlying the effect of DR1558, the expression levels of genes related to central metabolism and lysine-biosynthesis were analyzed by quantitative-real time polymerase chain reaction. The results showed that phosphoenolpyruvate carboxykinase (pck) was downregulated, and pyruvate kinase (pyk) and other lysine biosynthesis genes were upregulated. Furthermore, in fed-batch fermentation, C. glutamicum coexpressing dr1558 produced 25.14 g/L of cadaverine, a 1.25-fold increase in concentration relative to the control. These results suggested that the heterologous expression of dr1558 may improve the production of biorefinery products by recombinant C. glutamicum.


Asunto(s)
Corynebacterium glutamicum
20.
Bioresour Bioprocess ; 9(1): 24, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647777

RESUMEN

As an important monomer for bio-based nylons PA5X, cadaverine is mainly produced by enzymatic decarboxylation of L-lysine. A key issue with this process is the instability of L-lysine decarboxylase (CadA) during the reaction due to the dissociation of CadA subunits with the accumulation of alkaline cadaverine. In this work, we attempted to improve the thermal and alkaline stability of CadA by combining directed evolution and computation-guided virtual screening. Interestingly, site 477 residue located at the protein surface and not the decamer interface was found as a hotspot in directed evolution. By combinatorial mutagenesis of the positive mutations obtained by directed evolution and virtual screening with the previously reported T88S mutation, K477R/E445Q/T88S/F102V was generated as the best mutant, delivering 37% improvement of cadaverine yield at 50 ºC and pH 8.0. Molecular dynamics simulations suggested the improved rigidity of regional structures, increased number of salt bridges, and enhancement of hydrogen bonds at the multimeric interface as possible origins of the improved stability of the mutant. Using this four-point mutant, 160.7 g/L of cadaverine was produced from 2.0 M Lysine hydrochloride at 50 °C without pH regulation, with a conversion of 78.5%, whereas the wild type produced 143.7 g/L cadaverine, corresponding to 70% conversion. This work shows the combination of directed evolution and virtual screening as an efficient protein engineering strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA