RESUMEN
In vertebrates, male testosterone levels vary across the year being generally higher during the mating season relative to the offspring rearing season. However, male testosterone levels may also be associated with male anogenital distance (AGD) length (a proxy of prenatal androgen exposition), and influenced by the social group environment. In social species, it has been proposed that high levels of testosterone could be incompatible with the development of an amicable social environment. Thus, in these species, it is predicted that males have relatively low levels of testosterone. Our goal was to examine the potential association between male serum testosterone levels, season, male AGD length, and the social environment in the rodent Octodon degus under natural conditions. We quantified male serum testosterone levels during the mating and offspring rearing seasons, and we determined the number of females and males in each social group, as well as the composition of groups, in terms of the AGD length of the female and male group mates, from 2009 to 2019. Our results revealed that male testosterone levels covary with season, being highest during the offspring rearing season. Additionally, male testosterone levels vary with male AGD length, and female and male social group environments. More importantly, male degus exhibit low levels of testosterone that are indistinguishable from female levels during offspring rearing season. Similar to other highly social mammals, where males and females live together year-round, male amicable behavior could be the best male mating strategy, thus leading to a reduction in circulating testosterone levels.
Asunto(s)
Octodon , Roedores , Embarazo , Animales , Masculino , Femenino , Octodon/genética , Testosterona , Medio Social , FenotipoRESUMEN
Testosterone is known as a "male" hormone; however, females also synthetize testosterone, which influences female sexual and aggressive behavior. In female vertebrates, as in males, testosterone levels can vary seasonally. However, female testosterone levels may also be related with female anogenital distance (AGD) length phenotype (a proxy of prenatal androgen exposure), and the social group environment. We used data from a long-term rodent study (2009-2019) in a natural population of degus (Octodon degus) to examine the potential associations between female serum testosterone levels, season, female AGD phenotype, and social group composition. We quantified female serum testosterone levels during the mating and offspring rearing seasons, and we determined the number of females and males in social groups, as well the composition of groups, in terms of the AGD of the female and male group mates. Our results indicate that female testosterone levels vary with season, being highest during the offspring rearing season. Additionally, female testosterone levels were associated with the number of male group-members and the AGD of male group-members but were not associated with female social environment and focal female AGD phenotype. Together, our results suggest that female testosterone levels are sensitive to intersexual interactions. Our results also reveal that female and male testosterone levels do not differ between the sexes, a finding previously reported only in rock hyraxes. We discuss how the complex social system of degus could be driving this physiological similarity between the sexes.
Asunto(s)
Roedores , Testosterona , Embarazo , Animales , Masculino , Femenino , Reproducción , Medio Social , FenotipoRESUMEN
STUDY QUESTION: Are there abnormalities in gonadotrophin secretion, adrenal steroidogenesis and/or testicular steroidogenesis in brothers of women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER: Brothers of women with PCOS have increased gonadotrophin responses to gonadotrophin releasing hormone (GnRH) agonist stimulation and alterations in adrenal and gonadal steroidogenesis. WHAT IS KNOWN ALREADY: PCOS is a complex genetic disease. Male as well as female first-degree relatives have reproductive features of the syndrome. We previously reported that brothers of affected women have elevated circulating dehydroepiandrosterone sulfate levels. STUDY DESIGN, SIZE, DURATION: This was a case-control study performed in 29 non-Hispanic white brothers of 22 women with PCOS and 18 control men. PARTICIPANTS/MATERIALS, SETTING, METHODS: PCOS brothers and control men were of comparable age, weight and ethnicity. Adrenocorticotrophic hormone (ACTH) and GnRH agonist stimulation tests were performed. Gonadotrophin responses to GnRH agonist as well as changes in precursor-product steroid pairs (delta, Δ) across steroidogenic pathways in response to ACTH and GnRH agonist were examined. MAIN RESULTS AND THE ROLE OF CHANCE: Basal total (T) levels did not differ, but dehydroepiandrosterone (DHEA) levels (0.13 ± 0.08 brothers versus 0.22 ± 0.09 controls, nmol/l, P = 0.03) were lower in brothers compared with control men. ACTH-stimulated Δ17-hydroxypregnenolone (17Preg)/Δ17-hydroxyprogesterone (17Prog) (7.8 ± 24.2 brothers versus 18.9 ± 21.3 controls, P = 0.04) and ΔDHEA/Δandrostenedione (AD) (0.10 ± 0.05 brothers versus 0.14 ± 0.08 controls, P = 0.04) were lower in brothers than in the controls. GnRH agonist-stimulated Δ17Prog/ΔAD (0.28 ± 8.47 brothers versus 4.79 ± 10.28 controls, P = 0.003) was decreased and luteinizing hormone (38.6 ± 20.6 brothers versus 26.0 ± 9.8 controls, IU/l, P = 0.02), follicle-stimulating hormone (10.2 ± 7.5 brothers versus 4.8 ± 4.1 controls, IU/l P = 0.002), AD (1.7 ± 1.4 brothers versus 0.9 ± 1.5 controls, nmol/l, P = 0.02) and ΔAD/ΔT (0.16 ± 0.14 brothers versus 0.08 ± 0.12 controls, P = 0.005) responses were increased in brothers compared with controls. LIMITATIONS, REASONS FOR CAUTION: The modest sample size may have limited our ability to observe other possible differences in steroidogenesis between PCOS brothers and control men. WIDER IMPLICATIONS OF THE FINDINGS: Decreased ACTH-stimulated Δ17Preg/Δ17Prog and ΔDHEA/ΔAD responses suggested increased adrenal 3ß-hydroxysteroid dehydrogenase activity in the brothers. Decreased Δ17Prog/ΔAD and increased ΔAD/ΔT responses to GnRH agonist stimulation suggested increased gonadal 17,20-lyase and decreased gonadal 17ß-hydroxysteroid dehydrogenase activity in the brothers. Increased LH and FSH responses to GnRH agonist stimulation suggested neuroendocrine alterations in the regulation of gonadotrophin secretion similar to those in their proband sisters. These changes in PCOS brothers may reflect the impact of PCOS susceptibility genes and/or programming effects of the intrauterine environment. STUDY FUNDING/COMPETING INTERESTS: This research was supported by P50 HD044405 (A.D.), K12 HD055884 (L.C.T.), U54 HD034449 (A.D., R.S.L.) from the National Institute of Child Health and Development. Some hormone assays were performed at the University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core that is supported by U54 HD28934 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Partial support for some of the clinical studies was provided by UL1 RR025741 and UL1 TR000150 (Northwestern University Clinical and Translational Sciences Institute) from the National Center for Research Resources, National Institutes of Health, which is now the National Center for Advancing Translational Sciences. The authors have no conflict of interest to declare.