Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanotechnology ; 34(32)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37141868

RESUMEN

Autonomous experimentation (AE) is an emerging paradigm that seeks to automate the entire workflow of an experiment, including-crucially-the decision-making step. Beyond mere automation and efficiency, AE aims to liberate scientists to tackle more challenging and complex problems. We describe our recent progress in the application of this concept at synchrotron x-ray scattering beamlines. We automate the measurement instrument, data analysis, and decision-making, and couple them into an autonomous loop. We exploit Gaussian process modeling to compute a surrogate model and associated uncertainty for the experimental problem, and define an objective function exploiting these. We provide example applications of AE to x-ray scattering, including imaging of samples, exploration of physical spaces through combinatorial methods, and coupling toin situprocessing platforms These uses demonstrate how autonomous x-ray scattering can enhance efficiency, and discover new materials.

2.
Nanotechnology ; 33(16)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34965514

RESUMEN

Machine learning (ML) has gained extensive attention in recent years due to its powerful data analysis capabilities. It has been successfully applied to many fields and helped the researchers to achieve several major theoretical and applied breakthroughs. Some of the notable applications in the field of computational nanotechnology are ML potentials, property prediction, and material discovery. This review summarizes the state-of-the-art research progress in these three fields. ML potentials bridge the efficiency versus accuracy gap between density functional calculations and classical molecular dynamics. For property predictions, ML provides a robust method that eliminates the need for repetitive calculations for different simulation setups. Material design and drug discovery assisted by ML greatly reduce the capital and time investment by orders of magnitude. In this perspective, several common ML potentials and ML models are first introduced. Using these state-of-the-art models, developments in property predictions and material discovery are overviewed. Finally, this paper was concluded with an outlook on future directions of data-driven research activities in computational nanotechnology.

3.
Int J Mol Sci ; 22(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068386

RESUMEN

(1) Background: Properties and descriptors are two forms of molecular in silico representations. Properties can be further divided into functional, e.g., catalyst or drug activity, and material, e.g., X-ray crystal data. Millions of real measured functional property records are available for drugs or drug candidates in online databases. In contrast, there is not a single database that registers a real conversion, TON or TOF data for catalysts. All of the data are molecular descriptors or material properties, which are mainly of a calculation origin. (2) Results: Here, we explain the reason for this. We reviewed the data handling and sharing problems in the design and discovery of catalyst candidates particularly, material informatics and catalyst design, structural coding, data collection and validation, infrastructure for catalyst design and the online databases for catalyst design. (3) Conclusions: Material design requires a property prediction step. This can only be achieved based on the registered real property measurement. In reality, in catalyst design and discovery, we can observe either a severe functional property deficit or even property famine.


Asunto(s)
Diseño de Fármacos , Nanotecnología , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Catálisis , Bases de Datos Factuales , Ensayo de Materiales
4.
Nano Lett ; 19(6): 3387-3395, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31090428

RESUMEN

There has been increasing demand for materials with functional thermal properties, but traditional experiments and simulations are high-cost and time-consuming. The emerging discipline, materials informatics, is an effective approach that can accelerate materials development by combining material science and big data techniques. Recently, materials informatics has been successfully applied to designing thermal materials, such as thermal interface materials for heat-dissipation, thermoelectric materials for power generation, and so forth. This Mini Review summarizes the research progress associated with studies regarding the prediction and discovery of materials with desirable thermal transport properties by using materials informatics. On the basis of the review of past research, perspectives are discussed and future directions for studying functional thermal materials by materials informatics are given.

5.
Chemphyschem ; 20(22): 2946-2955, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31587461

RESUMEN

Similar to advancements gained from big data in genomics, security, internet of things, and e-commerce, the materials workflow could be made more efficient and prolific through advances in streamlining data sources, autonomous materials synthesis, rapid characterization, big data analytics, and self-learning algorithms. In electrochemical materials science, data sets are large, unstructured/heterogeneous, and difficult to process and analyze from a single data channel or platform. Computer-aided materials design together with advances in data mining, machine learning, and predictive analytics are expected to provide inexpensive and accelerated pathways towards tailor-made functionally optimized energy materials. Fundamental research in the field of electrochemical energy materials focuses primarily on complex interfacial phenomena and kinetic electrocatalytic processes. This perspective article critically assesses AI-driven modeling and computational approaches that are currently applied to those objects. An application-driven materials intelligence platform is introduced, and its functionalities are scrutinized considering the development of electrocatalyst materials for CO2 conversion as a use case.

6.
Materials (Basel) ; 17(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063905

RESUMEN

Ternary gold alloys (TGAs) are highly regarded for their excellent electrical properties. Electrical resistivity is a crucial indicator for evaluating the electrical performance of TGAs. To explore new promising TGAs with lower resistivity, we developed a reverse design approach integrating machine learning techniques and proactive searching progress (PSP) method. Compared with other models, the support vector regression (SVR) was determined to be the most optimal model for resistivity prediction. The training and test sets yielded R2 values of 0.73 and 0.77, respectively. The model interpretation indicated that lower electrical resistivity was associated with the following conditions: a van der Waals Radius (Vrt) of 0, a Vr (another van der Waals Radius) of less than 217, and a mass attenuation coefficient of MoKα (Macm) greater than 77.5 cm2g-1. Applying the PSP method, we successfully identified eight candidates whose resistivity was lower than that of the sample with the lowest resistivity in the dataset by more than 53-60%, e.g., Au1.000Cu4.406Pt1.833 and Au1.000Pt2.232In1.502. Finally, the candidates were validated to possess low resistivity through the pattern recognition method.

7.
ACS Appl Mater Interfaces ; 16(14): 17992-18000, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38534124

RESUMEN

Additive manufacturing (AM) can be advanced by the diverse characteristics offered by thermoplastic and thermoset polymers and the further benefits of copolymerization. However, the availability of suitable polymeric materials for AM is limited and may not always be ideal for specific applications. Additionally, the extensive number of potential monomers and their combinations make experimental determination of resin compositions extremely time-consuming and costly. To overcome these challenges, we develop an active learning (AL) approach to effectively choose compositions in a ternary monomer space ranging from rigid to elastomeric. Our AL algorithm dynamically suggests monomer composition ratios for the subsequent round of testing, allowing us to efficiently build a robust machine learning (ML) model capable of predicting polymer properties, including Young's modulus, peak stress, ultimate strain, and Shore A hardness based on composition while minimizing the number of experiments. As a demonstration of the effectiveness of our approach, we use the ML model to drive material selection for a specific property, namely, Young's modulus. The results indicate that the ML model can be used to select material compositions within at least 10% of a targeted value of Young's modulus. We then use the materials designed by the ML model to 3D print a multimaterial "hand" with soft "skin" and rigid "bones". This work presents a promising tool for enabling informed AM material selection tailored to user specifications and accelerating material discovery using a limited monomer space.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39106893

RESUMEN

Experimental exploration of new materials relies heavily on a laborious trial-and-error approach. In addition to substantial time and resource requirements, traditional experiments and computational modelling are typically limited in finding target materials within the enormous chemical space. Therefore, creating innovative techniques to expedite material discovery becomes essential. Recently, machine learning has emerged as a valuable tool for material discovery, garnering significant attention due to its remarkable advancements in prediction accuracy and time efficiency. This rapidly developing computational technique accelerates the search and optimization process and enables the prediction of material properties at a minimal computational cost, thereby facilitating the discovery of novel materials. We provide a comprehensive overview of recent studies on discovering new materials by predicting materials and their properties using machine learning techniques. Beginning with an introduction of the fundamental principles of machine learning methods, we subsequently examine the current research landscape on the applications of machine learning in predicting material properties that lead to the discovery of novel materials. Finally, we discuss challenges in employing machine learning within materials science, propose potential solutions, and outline future research directions.

9.
Patterns (N Y) ; 5(5): 100955, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38800367

RESUMEN

Materials scientists usually collect experimental data to summarize experiences and predict improved materials. However, a crucial issue is how to proficiently utilize unstructured data to update existing structured data, particularly in applied disciplines. This study introduces a new natural language processing (NLP) task called structured information inference (SII) to address this problem. We propose an end-to-end approach to summarize and organize the multi-layered device-level information from the literature into structured data. After comparing different methods, we fine-tuned LLaMA with an F1 score of 87.14% to update an existing perovskite solar cell dataset with articles published since its release, allowing its direct use in subsequent data analysis. Using structured information, we developed regression tasks to predict the electrical performance of solar cells. Our results demonstrate comparable performance to traditional machine-learning methods without feature selection and highlight the potential of large language models for scientific knowledge acquisition and material development.

10.
Adv Mater ; 35(22): e2210788, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949007

RESUMEN

Crystal-graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high-quality dataset is engineered to provide a better balance across chemical and crystal-symmetry space. Crystal-graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine-learning-assisted high-throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom-1 . The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap-deformation potentials.

11.
J Mol Graph Model ; 123: 108506, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37182505

RESUMEN

Molecular properties prediction and new material discovery are significant for the pharmaceutical industry, food, chemistry, and other fields. The popular methods are theoretical mechanism calculation and machine learning. There is a deviation between the theoretical mechanism calculation results and the experimental data. Machine learning method provides a promising solution. However, the process is lack of interpretability, and the reliability and the generalization depend on the training data. In this paper, a mechanism correction model combined with graph neural network (GNN) model which is based on the fusion of graph embedding and descriptors vector is proposed as backbone network to proceed molecule properties prediction and new material discovery. The molecular structure is input to graph neural network and the abstracted features are fused with numerical features together for training. The experiment data and computing data are designed as label constructor, and then the theoretical computation (mechanism driven model) is fused with the output of GNN (data-driven model) to form a fused model to modulate the output for the molecular property prediction. Experiments for public data set are executed and the results show that Mechanism-Data-Driven Graph Neural Network (MD-GNN) can effectively make the predicted results more accurate. Nineteen molecules by different construction are designed for potential drug discovery, the prediction from the proposed MD-GNN model shows that there are 9 candidates are discovered.


Asunto(s)
Descubrimiento de Drogas , Aprendizaje Automático , Reproducibilidad de los Resultados , Redes Neurales de la Computación
12.
Adv Sci (Weinh) ; 10(28): e2301011, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37551059

RESUMEN

Oxidation states (OS) are the charges on atoms due to electrons gained or lost upon applying an ionic approximation to their bonds. As a fundamental property, OS has been widely used in charge-neutrality verification, crystal structure determination, and reaction estimation. Currently, only heuristic rules exist for guessing the oxidation states of a given compound with many exceptions. Recent work has developed machine learning models based on heuristic structural features for predicting the oxidation states of metal ions. However, composition-based oxidation state prediction still remains elusive so far, which has significant implications for the discovery of new materials for which the structures have not been determined. This work proposes a novel deep learning-based BERT transformer language model BERTOS for predicting the oxidation states for all elements of inorganic compounds given only their chemical composition. This model achieves 96.82% accuracy for all-element oxidation states prediction benchmarked on the cleaned ICSD dataset and achieves 97.61% accuracy for oxide materials. It is also demonstrated how it can be used to conduct large-scale screening of hypothetical material compositions for materials discovery.

13.
ACS Appl Mater Interfaces ; 15(23): 28398-28409, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37249400

RESUMEN

Development of nanoscale multicomponent solid inorganic materials is often hindered by slow solid diffusion kinetics and poor precursor mixing in conventional solid-state synthesis. These shortcomings can be alleviated by combining nanosized precursor mixtures and low temperature reaction, which could reduce crystal growth and accelerate the solid diffusion at the same time. However, high throughput production of nanoparticle mixtures with tunable composition via conventional synthesis is very challenging. In this work, we demonstrate that ∼10 nm homogeneous mixing of sub-10 nm nanoparticles can be achieved via spark nanomixing at room temperature and pressure. Kinetically driven Spark Plasma Discharge nanoparticle generation and ambient processing conditions limit particle coarsening and agglomeration, resulting in sub-10 nm primary particles of as-deposited films. The intimate mixing of these nanosized precursor particles enables intraparticle diffusion and formation of Cu/Ni nanoalloy during subsequent low temperature annealing at 100 °C. We also discovered that cross-particle diffusion is promoted during the low-temperature sulfurization of Cu/Ag which tends to phase-segregate, eventually leading to the growth of sulfide nanocrystals and improved homogeneity. High elemental homogeneity, small diffusion path lengths, and high diffusibility synergically contribute to faster diffusion kinetics of sub-10 nm nanoparticle mixtures. The combination of ∼10 nm homogeneous precursors via spark nanomixing, low-temperature annealing, and a wide range of potentially compatible materials makes our approach a good candidate as a general platform toward accelerated solid state synthesis of nanomaterials.

14.
ACS Appl Mater Interfaces ; 13(50): 60508-60521, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878247

RESUMEN

Ultraviolet (UV)-curable thermoset shape memory polymers (TSMPs) with high recovery stress but mild glass transition temperature (Tg) are highly desired for 3D/4D printing lightweight load-bearing structures and devices. However, a bottleneck is that high recovery stress usually means high Tg. For a few TSMPs with high recovery stress, their Tg values are close to the decomposition temperature, and thus, the shape memory effect cannot be triggered safely and effectively. While machine learning (ML) has served as a useful tool to discover new materials and drugs, the grand challenge of using ML to discover new TSMPs persists in the very limited data available. Here, we report an enhanced ML approach by combining the transfer learning-variational autoencoder with a weighted-vector combination method. By learning a large data set with drug molecules in a pretraining process, we were able to effectively map the TSMPs to a hidden space that is much closer to a Gaussian distribution. Through this approach, we created a large compositional space and were able to discover five new types of UV-curable TSMPs with desired properties, one of which was validated by the experiments. Our contribution includes (1) representing the features of TSMPs by drug molecules to overcome the barrier of a limited training data set and (2) developing a ML framework that is able to overcome the barrier of mapping the molar ratio information. It is shown that this approach can effectively learn TSMP features by utilizing the relatedness between the data-scarce (and biased) TSMP target and data-abundant drug source, and the result is much more accurate and more robust than the benchmark set by the support vector machine method using direct label encoding and Morgan encoding. Therefore, it is believed that this framework is a state-of-the-art study in the TSMP field. This study opens new opportunities for discovering not only new TSMPs but also other thermoset polymers.


Asunto(s)
Materiales Biocompatibles/química , Aprendizaje Automático , Impresión Tridimensional , Materiales Inteligentes/química , Temperatura de Transición , Ensayo de Materiales , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA