Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.052
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 174(2): 259-270.e11, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29937224

RESUMEN

Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era.


Asunto(s)
Biomimética/métodos , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/prevención & control , Fosfatasa Alcalina/sangre , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Femenino , Células HEK293 , Humanos , Receptores de Lipopolisacáridos/genética , Lisostafina/metabolismo , Lisostafina/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Plásmidos/genética , Plásmidos/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Receptor Toll-Like 1/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 6/genética , Factor de Transcripción AP-1/metabolismo
2.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37742050

RESUMEN

The emergence of multidrug-resistant bacteria is a critical global crisis that poses a serious threat to public health, particularly with the rise of multidrug-resistant Staphylococcus aureus. Accurate assessment of drug resistance is essential for appropriate treatment and prevention of transmission of these deadly pathogens. Early detection of drug resistance in patients is critical for providing timely treatment and reducing the spread of multidrug-resistant bacteria. This study aims to develop a novel risk assessment framework for S. aureus that can accurately determine the resistance to multiple antibiotics. The comprehensive 7-year study involved ˃20 000 isolates with susceptibility testing profiles of six antibiotics. By incorporating mass spectrometry and machine learning, the study was able to predict the susceptibility to four different antibiotics with high accuracy. To validate the accuracy of our models, we externally tested on an independent cohort and achieved impressive results with an area under the receiver operating characteristic curve of 0. 94, 0.90, 0.86 and 0.91, and an area under the precision-recall curve of 0.93, 0.87, 0.87 and 0.81, respectively, for oxacillin, clindamycin, erythromycin and trimethoprim-sulfamethoxazole. In addition, the framework evaluated the level of multidrug resistance of the isolates by using the predicted drug resistance probabilities, interpreting them in the context of a multidrug resistance risk score and analyzing the performance contribution of different sample groups. The results of this study provide an efficient method for early antibiotic decision-making and a better understanding of the multidrug resistance risk of S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Aprendizaje Automático , Medición de Riesgo
3.
Proc Natl Acad Sci U S A ; 119(36): e2208378119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037346

RESUMEN

The widespread use of antibiotics drives the evolution of antimicrobial-resistant bacteria (ARB), threatening patients and healthcare professionals. Therefore, the development of novel strategies to combat resistance is recognized as a global healthcare priority. The two methods to combat ARB are development of new antibiotics or reduction in existing resistances. Development of novel antibiotics is a laborious and slow-progressing task that is no longer a safe reserve against looming risks. In this research, we suggest a method for reducing resistance to extend the efficacious lifetime of current antibiotics. Antimicrobial photodynamic therapy (aPDT) is used to generate reactive oxygen species (ROS) via the photoactivation of a photosensitizer. ROS then nonspecifically damage cellular components, leading to general impairment and cell death. Here, we test the hypothesis that concurrent treatment of bacteria with antibiotics and aPDT achieves an additive effect in the elimination of ARB. Performing aPDT with the photosensitizer methylene blue in combination with antibiotics chloramphenicol and tetracycline results in significant reductions in resistance for two methicillin-resistant Staphylococcus aureus (MRSA) strains, USA300 and RN4220. Additional resistant S. aureus strain and antibiotic combinations reveal similar results. Taken together, these results suggest that concurrent aPDT consistently decreases S. aureus resistance by improving susceptibility to antibiotic treatment. In turn, this development exhibits an alternative to overcome some of the growing MRSA challenge.


Asunto(s)
Farmacorresistencia Microbiana , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Antibacterianos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de la radiación , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/farmacología
4.
Clin Microbiol Rev ; 36(4): e0014822, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37982596

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.


Asunto(s)
Infecciones Comunitarias Adquiridas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus , Virulencia , Antibacterianos , Exotoxinas/genética , Exotoxinas/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Factores de Virulencia/genética
5.
J Infect Dis ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536055

RESUMEN

The Centers for Disease Control estimates antibiotic-associated pathogens result in 2.8 million infections and 38,000 deaths annually in the United States. This study applies species distribution modeling to elucidate the impact of environmental determinants of human infectious disease in an era of rapid global change. We modeled methicillin-resistant Staphylococcus aureus and Clostridioides difficile using 31 publicly accessible bioclimatic, healthcare, and sociodemographic variables. Ensemble models were created from 8 unique statistical and machine learning algorithms. Using International Classification of Diseases, 10th Edition codes, we identified 305,528 diagnoses of methicillin-resistant S.aureus and 302,001 diagnoses of C.difficile presence. Three environmental factors - average maximum temperature, specific humidity, and agricultural land density - emerged as major predictors of increased methicillin-resistant S.aureus and C.difficile presence; variables representing healthcare availability were less important. Species distribution modeling may be a powerful tool for identifying areas at increased risk for disease presence and have important implications for disease surveillance systems.

6.
J Infect Dis ; 229(6): 1658-1668, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38147364

RESUMEN

Owing to the presence of microbial biofilm on the implant, the eradication of biofilm-associated infections poses a challenge for antibiotic therapies. The study aimed to investigate the efficacy and safety of the novel antibiotic agent TNP-2092 in the context of implant infections. In vivo, rats with periprosthetic joint infection (PJI) treated with antibiotics showed an increase in body weight and decrease in swelling, temperature, and width of knee, compared with the control group. Meanwhile, inflammatory markers in synovium and serum were decreased in the TNP-2092 group, consistent with the pathological results. Moreover, TNP-2092 was effective in eliminating bacteria and disruption biofilm formation, and further alleviated the abnormal bone absorption and reactive bone changes around the prosthesis. In conclusion, intra-articular injection of TNP-2092 is safe and effective in treating knee PJI in a rat model. The study provides a foundation for the future utilization of TNP-2092 in the management of implant-related infections.


Asunto(s)
Antibacterianos , Biopelículas , Staphylococcus aureus Resistente a Meticilina , Infecciones Relacionadas con Prótesis , Infecciones Estafilocócicas , Animales , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Ratas , Biopelículas/efectos de los fármacos , Masculino , Inyecciones Intraarticulares , Ratas Sprague-Dawley , Modelos Animales de Enfermedad
7.
Emerg Infect Dis ; 30(8): 1714-1718, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043440

RESUMEN

In Israel, prevalence of sequence type 913, staphylococcal cassette chromosome mecIVa, spa type t991 methicillin-resistant Staphylococcus aureus lineage has surged among pediatric populations, predominantly in Arab and Orthodox Jewish communities. Antimicrobial resistance patterns vary by demographics. This lineage's spread and microevolution in the Middle East underscore the need for ongoing surveillance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Israel/epidemiología , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Niño , Preescolar , Lactante , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Masculino , Adolescente , Femenino , Prevalencia , Recién Nacido
8.
Antimicrob Agents Chemother ; 68(3): e0117523, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259089

RESUMEN

Staphylococcus aureus sequence type (ST) 5 has spread worldwide; however, phylogeographic studies on the evolution of global phylogenetic and Asian clades of ST5 are lacking. This study included 368 ST5 genome sequences, including 111 newly generated sequences. Primary phylogenetic analysis suggested that there are five clades, and geographical clustering of ST5 methicillin-resistant S. aureus (MRSA) was linked to the acquisition of S. aureus pathogenicity islands (SaPIs; enterotoxin gene island) and integration of the prophage φSa3. The most recent common ancestor of global S. aureus ST5 dates back to the mid-1940s, coinciding with the clinical introduction of penicillin. Bayesian phylogeographic inference allowed to ancestrally trace the Asian ST5 MRSA clade to Japan, which may have spread to major cities in China and Korea in the 1990s. Based on a pan-genome-wide association study, the emergence of Asian ST5 clades was attributed to the gain of prophages, SaPIs, and plasmids, as well as the coevolution of resistance genes. Clade IV displayed greater genomic diversity than the Asian MRSA clades. Collectively, our study provides in-depth insights into the global evolution of S. aureus ST5 mainly in China and the United States and reveals that different S. aureus ST5 clades have arisen independently in different parts of the world, with limited geographic dispersal across continents.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus Resistente a Meticilina/genética , Filogenia , Estudio de Asociación del Genoma Completo , Teorema de Bayes , Genotipo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Variación Genética/genética
9.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38837393

RESUMEN

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Asunto(s)
Antibacterianos , Cefazolina , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Oxacilina , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefazolina/farmacología , Cefazolina/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Oxacilina/farmacología , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Fenotipo , beta-Lactamas/farmacología , beta-Lactamas/uso terapéutico , Masculino , Bicarbonato de Sodio/farmacología , Femenino , Persona de Mediana Edad
10.
Antimicrob Agents Chemother ; 68(3): e0162723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38349162

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most ß-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care ß-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by ß-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting ß-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific ß-lactam agents.


Asunto(s)
Endocarditis Bacteriana , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Cefuroxima/farmacología , Bicarbonatos/farmacología , Staphylococcus aureus , beta-Lactamas/farmacología , Endocarditis Bacteriana/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico
11.
Small ; 20(24): e2311764, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506607

RESUMEN

The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.


Asunto(s)
Técnicas Biosensibles , Staphylococcus aureus Resistente a Meticilina , Técnicas de Amplificación de Ácido Nucleico , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Técnicas Biosensibles/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión a las Penicilinas/genética , Animales , Nucleasa Microcócica/metabolismo , Nucleasa Microcócica/genética
12.
J Clin Microbiol ; 62(5): e0144523, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38557148

RESUMEN

The virulence of methicillin-resistant Staphylococcus aureus (MRSA) and its potentially fatal outcome necessitate rapid and accurate detection of patients colonized with MRSA in healthcare settings. Using the BD Kiestra Total Lab Automation (TLA) System in conjunction with the MRSA Application (MRSA App), an imaging application that uses artificial intelligence to interpret colorimetric information (mauve-colored colonies) indicative of MRSA pathogen presence on CHROMagar chromogenic media, anterior nares specimens from three sites were evaluated for the presence of mauve-colored colonies. Results obtained with the MRSA App were compared to manual reading of agar plate images by proficient laboratory technologists. Of 1,593 specimens evaluated, 1,545 (96.98%) were concordant between MRSA App and laboratory technologist reading for the detection of MRSA growth [sensitivity 98.15% (95% CI, 96.03, 99.32) and specificity 96.69% (95% CI, 95.55, 97.60)]. This multi-site study is the first evaluation of the MRSA App in conjunction with the BD Kiestra TLA System. Using the MRSA App, our results showed 98.15% sensitivity and 96.69% specificity for the detection of MRSA from anterior nares specimens. The MRSA App, used in conjunction with laboratory automation, provides an opportunity to improve laboratory efficiency by reducing laboratory technologists' labor associated with the review and interpretation of cultures.


Asunto(s)
Automatización de Laboratorios , Técnicas Bacteriológicas , Staphylococcus aureus Resistente a Meticilina , Sensibilidad y Especificidad , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Humanos , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Automatización de Laboratorios/métodos , Técnicas Bacteriológicas/métodos , Automatización/métodos , Colorimetría/métodos , Inteligencia Artificial
13.
BMC Microbiol ; 24(1): 241, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961344

RESUMEN

BACKGROUND: Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections. RESULTS: Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types. CONCLUSIONS: MRSA strains with biofilm production capability warrant increased vigilance.


Asunto(s)
Biopelículas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/fisiología , China/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Genes Bacterianos/genética , Humanos
14.
BMC Microbiol ; 24(1): 89, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491414

RESUMEN

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) is a challenging global health threat, resulting in significant morbidity and mortality worldwide. This study aims to determine the molecular characteristics and antimicrobial susceptibility of 263 MRSA isolates in Zhejiang Province, east China. METHODS: From 2014 to 2019, a total of 263 MRSA isolates from bloodstream infections (BSIs) were collected from 6 hospitals in 4 cities in Zhejiang province, east China. Antimicrobial susceptibility tests were conducted according to the guidelines set forth by the Clinical and Laboratory Standards Institute (CLSI). To characterize and analyze these isolates, multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) typing and virulence genes gene profiles were performed. RESULTS: The most predominant clone was ST5-SCCmec II-t311, which accounted for 41.8% (110/263), followed by ST59 (44/263, 16.7%). Compared with non-ST5-II-t311 isolates, ST5-II-t311 isolates were more resistant to erythromycin, tetracycline, levofloxacin, moxifloxacin, and ciprofloxacin, but more susceptible to clindamycin. Moreover, the rates of multidrug resistance were higher in ST5-II-t311 isolates compared to the non-ST5-II-t311 isolates. In comparison to the non-ST5-II-t311 isolates, ST5-II-t311 isolates showed no significant difference in virulence genes detected. CONCLUSIONS: MRSA ST5-II-t311 clone has become the most predominant clone in Zhejiang Province, east China and has higher rates of multidrug resistance than other isolates, that should be kept in mind when treating BSI. Moreover, MRSA ST59 clone shows an upward trend and has begun to spread into hospitals. Our findings highlight the importance of epidemiological studies of S. aureus carriage in the eastern region.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus/genética , Infecciones Estafilocócicas/tratamiento farmacológico , Tipificación de Secuencias Multilocus/métodos , Prevalencia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cromosomas , China/epidemiología , Pruebas de Sensibilidad Microbiana
15.
BMC Microbiol ; 24(1): 246, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970013

RESUMEN

Previous studies have shown that antimicrobial photodynamic inactivation (aPDI) can be strongly potentiated by the addition of the non-toxic inorganic salt, potassium iodide (KI). This approach was shown to apply to many different photosensitizers, including the xanthene dye Rose Bengal (RB) excited by green light (540 nm). Rose Bengal diacetate (RBDA) is a lipophilic RB derivative that is easily taken up by cells and hydrolyzed to produce an active photosensitizer. Because KI is not taken up by microbial cells, it was of interest to see if aPDI mediated by RBDA could also be potentiated by KI. The addition of 100 mM KI strongly potentiated the killing of Gram-positive methicillin-resistant Staphylocccus aureus, Gram-negative Eschericia coli, and fungal yeast Candida albicans when treated with RBDA (up to 15 µM) for 2 hours followed by green light (540 nm, 10 J/cm2). Both RBDA aPDI regimens (400 µM RBDA with or without 400 mM KI followed by 20 J/cm2 green light) accelerated the healing of MRSA-infected excisional wounds in diabetic mice, without damaging the host tissue.


Asunto(s)
Candida albicans , Staphylococcus aureus Resistente a Meticilina , Fármacos Fotosensibilizantes , Yoduro de Potasio , Rosa Bengala , Infecciones Estafilocócicas , Cicatrización de Heridas , Animales , Rosa Bengala/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Yoduro de Potasio/farmacología , Ratones , Candida albicans/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Escherichia coli/efectos de los fármacos , Diabetes Mellitus Experimental/microbiología , Diabetes Mellitus Experimental/tratamiento farmacológico , Fotoquimioterapia/métodos , Sinergismo Farmacológico , Luz , Masculino
16.
Cytokine ; 180: 156662, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824863

RESUMEN

BACKGROUND: Previous researches have clarified that miR-155 is increased in methicillin-resistant Staphylococcus aureus (MRSA) pneumonia, and modulates Th9 differentiation. Like Th9 cells, Th17 cells were also a subset of CD4+ T cells and involved in MRSA pneumonia progression. This work aimed to investigate the role and mechanism of miR-155 in Th17 differentiation. METHODS: Bronchoalveolar lavage fluid (BALF) was collected from children with MRSA pneumonia and bronchial foreign bodies. MRSA-infected murine model was established followed by collecting BALF and lung tissues. qRT-PCR, ELISA and flow cytometry were performed to examine the mRNA expression and concentration of IL-17 and the number of Th17 cells in above samples. HE and ELISA were used to evaluate inflammatory responses in lung. Furthermore, CD4+ T cells were isolated from BALF of children for in vitro experiments. After treatments with miR-155 mimic/inhibitor, the roles of miR-155 in Th17/IL-17 regulation were determined. The downstream of miR-155 was explored by qRT-PCR, western blotting, dual luciferase reporter analysis and RIP assay. RESULTS: The levels of IL-17 and the proportion of Th17 cells were increased in children with MRSA pneumonia. A similar pattern was observed in MRSA-infected mice. On the contrary, IL-17 neutralization abolished the activation of Th17/IL-17 induced by MRSA infection. Furthermore, IL-17 blockade diminished the inflammation caused by MRSA. In vitro experiments demonstrated miR-155 positively regulated IL-17 expression and Th17 differentiation. Mechanistically, FOXP3 was a direct target of miR-155. miR-155 inhibited FOXP3 level via binding between FOXP3 and Argonaute 2 (AGO2), the key component of RNA-induced silencing complex (RISC). FOXP3 overexpression reversed elevated IL-17 levels and Th17 differentiation induced by miR-155. CONCLUSIONS: miR-155 facilitates Th17 differentiation by reducing FOXP3 through interaction of AGO2 and FOXP3 to promote the pathogenesis of MRSA pneumonia. IL-17 blockade weakens the inflammation due to MRSA, which provides a nonantibiotic treatment strategy for MRSA pneumonia.


Asunto(s)
Diferenciación Celular , Factores de Transcripción Forkhead , Inflamación , Interleucina-17 , Staphylococcus aureus Resistente a Meticilina , MicroARNs , Células Th17 , MicroARNs/genética , MicroARNs/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Animales , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Humanos , Ratones , Interleucina-17/metabolismo , Inflamación/metabolismo , Masculino , Líquido del Lavado Bronquioalveolar , Femenino , Niño , Neumonía Estafilocócica/inmunología , Neumonía Estafilocócica/metabolismo , Neumonía Estafilocócica/microbiología , Preescolar
17.
Microb Pathog ; 189: 106601, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423404

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA), a drug-resistant human pathogen causes several nosocomial as well as community-acquired infections involving biofilm machinery. Hence, it has gained a wide interest within the scientific community to impede biofilm-induced MRSA-associated health complications. The current study focuses on the utilization of a natural bioactive compound called piperine to control the biofilm development of MRSA. Quantitative assessments like crystal violet, total protein recovery, and fluorescein-di-acetate (FDA) hydrolysis assays, demonstrated that piperine (8 and 16 µg/mL) could effectively compromise the biofilm formation of MRSA. Light and scanning electron microscopic image analysis confirmed the same. Further investigation revealed that piperine could reduce extracellular polysaccharide production by down-regulating the expression of icaA gene. Besides, piperine could reduce the cell-surface hydrophobicity of MRSA, a crucial factor of biofilm formation. Moreover, the introduction of piperine could interfere with microbial motility indicating the interaction of piperine with the quorum-sensing components. A molecular dynamics study showed a stable binding between piperine and AgrA protein (regulator of quorum sensing) suggesting the possible meddling of piperine in quorum-sensing of MRSA. Additionally, the exposure to piperine led to the accumulation of intracellular reactive oxygen species (ROS) and potentially heightened cell membrane permeability in inhibiting microbial biofilm formation. Besides, piperine could reduce the secretion of diverse virulence factors from MRSA. Further exploration revealed that piperine interacted with extracellular DNA (e-DNA), causing disintegration by weakening the biofilm architecture. Conclusively, this study suggests that piperine could be a potential antibiofilm molecule against MRSA-associated biofilm infections.


Asunto(s)
Alcaloides , Benzodioxoles , Staphylococcus aureus Resistente a Meticilina , Piperidinas , Alcamidas Poliinsaturadas , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Biopelículas , Fitoquímicos/farmacología , ADN/metabolismo , Pruebas de Sensibilidad Microbiana
18.
Microb Pathog ; 195: 106903, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39208961

RESUMEN

The emergence of highly successful genetic lineages of methicillin-resistant Staphylococcus aureus (MRSA) poses a challenge in human healthcare due to increased morbidity and mortality rates. The RdJ clone (CC5-ST105-SCCmecII-t002 lineage), previously identified in Rio de Janeiro, Brazil, was linked to bloodstream infections and features a mutation in the aur gene (encoding aureolysin). Additionally, clinical isolates derived from this clone were more effective at evading monocytic immune responses. This study aimed to detect the RdJ clone among clinical MRSA isolated in Santa Catarina (SC) and examine its antimicrobial resistance and phagocytosis evasion capabilities. Our findings revealed the RdJ clone in 20 % of MRSA isolates, all exhibiting multiresistance. RdJ clone isolates from SC did not demonstrate a decreased rate of phagocytosis compared to CC5 non-RdJ isolates. Structural analysis suggests that the aur mutation is unlikely to significantly impact aureolysin activity. Genomic analysis of one isolate unveiled a genetic variant of the RdJ clone, sharing lineage and gene distribution but lacking the aur mutation. This study enhances the understanding of the clinical and epidemiologic risks associated with the RdJ clone and the biological mechanisms underlying its spreading in SC.

19.
Cytotherapy ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38944795

RESUMEN

BACKGROUND AIMS: The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds. METHODS: Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load. RESULTS: Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds. CONCLUSIONS: Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.

20.
Cell Commun Signal ; 22(1): 188, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519959

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/fisiología , Staphylococcus aureus , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas , Percepción de Quorum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA