RESUMEN
OBJECTIVES: There remains an unmet need for a laser-enabled tissue coring device that can effectively improve face and neck skin laxity and rhytides. We investigate a novel 2910 nm erbium-doped fluoride glass fiber laser (2910 nm fiber laser) (UltraClear; Acclaro Medical) for laser-coring of submental tissue. METHODS: Five subjects, Glogau scale III-IV, were treated with a single pulse of the laser-coring mode of the 2910 nm fiber laser in the submentum. A 4 mm punch biopsy was immediately performed. Biopsy specimens were sectioned and stained with hematoxylin and eosin and placed on glass slides. All sections were reviewed, and sections containing the center of the transected core were analyzed for depth and diameter of the ablative microchannel and width of the surrounding zone of coagulation. RESULTS: A total of 15 intact micro-cores were analyzed. Histological analysis revealed an average ± standard deviation microchannel diameter of 242.5 ± 65.2 µm, an average ablative depth of 980 ± 318.8 µm, and an average zone of coagulation of 104 ± 32 µm. CONCLUSIONS: Laser-enabled tissue coring with a novel 2910 nm fiber laser can safely achieve a wider microchannel diameter with ablative depth extending to the mid and deep dermis, which has the potential for collagen contraction and tissue tightening. Laser-coring to this ablation diameter and depth and with the surrounding zone of coagulation was found to be safe without adverse effects of post-inflammatory erythema or scarring in our study.
Asunto(s)
Láseres de Estado Sólido , Humanos , Láseres de Estado Sólido/uso terapéutico , Femenino , Persona de Mediana Edad , Envejecimiento de la Piel/efectos de la radiación , Adulto , Masculino , Técnicas Cosméticas/instrumentación , Cuello , Vidrio , CaraRESUMEN
Laser resurfacing may be accompanied by unwanted side effects. The micro coring technology, designed to remove small skin columns, was developed to avoid the thermal injury associated with lasers. However, very limited data are available on its pre-clinical efficacy and safety. The novel robotic, fractional micro-coring device, AimeTM, was tested on four pigs, each treated in 12 sites, at 6 time-points, over the course of 28 days. Macroscopic and microscopic evaluation was performed at each of the 6 time-points during the 28-day follow-up. Macroscopically, treatment resulted in erythema and mild edema that quickly resolved. Microscopically, there was progressive re-coverage of the tested sites with complete, well differentiated, newly formed epidermis, associated with efficient elimination of the underlying excised dermis, which was replaced by maturing fibroplasia. Some of the sites demonstrated complete healing already after 7 days. No significant adverse events were noted with the use of the device. The use of the micro-coring device AimeTM in a porcine model for skin fractional micro-excision and resurfacing was effective and safe. The comprehensive gradual healing process shown in this study with detailed histopathological images can also serve as a basis for future pre-clinical studies of fractional ablative devices.
RESUMEN
The radial growth of trees plays a crucial role in determining forest carbon sequestration capacity. Understanding the growth dynamics of trees and their response to environmental factors is essential for predicting forest's carbon sink potential under future climate change. Coniferous forest trees are particularly sensitive to climate change, with growth dynamics responding rapidly to environmental shifts. We collected and analyzed data from 99 papers published between 1975 and 2023, and examined the effects of exogenous factors (such as temperature, water, and photoperiod) and endogenous factors (including tree age and species) on cambial activity and radial growth in conifers. We further explored the mechanisms underlying these effects. The results showed that climate warming had the potential to advance the onset while delayed the end of xylem differentiation stages in conifers in temperate and boreal regions. Water availability played a crucial role in regulating the timing of cambial phenology and wood formation by influencing water potential and cell turgor. Additionally, the photoperiod not only participated in regulating the start and end times of growth, but also influenced the timing of maximum growth rate occurrence. Future climate warming was expected to extend the growing season, leading to increase in growth of conifers in boreal regions and expanding forests to higher altitudes or latitudes. However, changes in precipitation patterns and increased evapotranspiration resulting from temperature increases might advance the end of growing season and reduce growth rate in arid areas. To gain a more comprehensive understanding of the relationship between radial growth and climatic factors, it is necessary to develop process-based models to elucidate the physiological mechanisms underlying wood formation and the response of trees to climatic factors.
Asunto(s)
Cámbium , Cambio Climático , Tracheophyta , Cámbium/crecimiento & desarrollo , Tracheophyta/crecimiento & desarrollo , Tracheophyta/fisiología , Ecosistema , Secuestro de CarbonoRESUMEN
BACKGROUND: Microneedling (MN) and microcoring (MCT) are both methods used for percutaneous collagen induction. This minimally invasive technique involves creating controlled damage in cutaneous tissue to induce neocollagenesis and neoelastogenesis. MN utilizes solid microneedles and is commonly combined with radiofrequency (RF) to add thermal energy, while MCT involves hollow microneedles capable of removing excess tissue without inducing scar formation. AIMS: The purpose of this review was to summarize recent literature for MN and MCT, with the goal of assisting clinical decision making regarding the use of these technologies. METHODS: PubMed search was conducted for relevant articles published within the last 10 years. Scoping literature review was then performed with pertinent findings reported. RESULTS: Existing literature investigating MCT is sparse. Limited data on in vivo, human effects of this technology exist. Two out of 14 studies in this review pertained to MCT. CONCLUSION: Additional high-powered clinical studies are needed to guide future cosmetic treatments with MN and MCT.
Asunto(s)
Colágeno , Técnicas Cosméticas , Cara , Cuello , Inducción Percutánea del Colágeno , Humanos , Colágeno/administración & dosificación , Técnicas Cosméticas/instrumentación , Agujas , Rejuvenecimiento , Piel/efectos de la radiación , Piel/metabolismo , Envejecimiento de la Piel/efectos de la radiaciónRESUMEN
Tree growth is the main way of carbon sequestration in forest ecosystems, which is influenced by climatic and non-climatic factors. The long-term location monitoring of cambial phenology and wood formation dynamics (xylogenesis) is an important method to clarify the responses of radial growth to climate change. Here, we reviewed studies on cambial phenology and xylogenesis by microcoring method. Firstly, we reviewed the effects of climatic factors on cambial phenology. The onset and cessation of xylogenesis were determined by temperature in cold and humid conditions. Temperature and water availability collectively modulated the onset of xylogenesis under dry conditions, and the later determined the end of xylogenesis. The radial increment was regulated by rate and duration of cell production, with the maximum of growth rate occurring around the summer solstice. Short-term N addition did not affect wood formation dynamics. Secondly, we reviewed the roles of biological factors in regulating xylogenesis. The onset of xylogenesis differred among species, ages, and inter-specific competition. Seasonal dynamics of non-structural carbohydrates were coupled with wood formation. Finally, we reviewed the response mechanisms of xylogenesis to the interaction of climatic and biological factors. In conclusion, we put forward problems in current studies and prospected future development to provide reference for further scientific research.
Asunto(s)
Árboles , Xilema , Cámbium , Ecosistema , MaderaRESUMEN
We examined the seasonal growth dynamics of a deciduous tree species Garuga floribunda in the tropical seasonal rain forest in Xishuangbanna and monitored the stem radial growth with both high resolution dendrometer and microcoring methods. Combining with the monitoring of non-structural carbohydrates (NSCs) in stem and environmental factors, we analyzed the eco-physiological drivers underlying the seasonal cambial activity and radial growth dynamics. The results of high reso-lution dendrometer method showed that the growth of G. floribunda began at the end of May (day of year, DOY: 149.3±7.2) and ended at the end of August (DOY: 241.0±14.7) in 2020, the annual total radial growth was 3.12 mm, and the maximum growth rate was 0.04 mm·d-1. Based on the microcoring methods, we found that xylem cell enlarging started from March 9th (69.2±6.2) and cell wall thickening ended on September 19th (DOY: 262.8±2.8). The cumulative xylem radial growth was 1.76 mm, and the maximum growth rate was 0.009 mm·d-1. The daily radial growth rate of G. floribunda was significantly and positively correlated with precipitation, relative humidity, daily minimum air temperature, soil moisture and temperature at the depth of 20 cm, and was negatively correlated with daily maximum air temperature, vapor pressure deficit, maximum wind speed, and water vapor pressure. The starch and soluble sugar contents in the sapwood of G. floribunda were relatively higher before the growing season. The starch content was lowest in the end of March, while the content of soluble sugars was lowest in middle of May. At the end of the growing season, the contents of starch and soluble sugar in G. floribunda peaked in the middle of October and the end of December, respectively.
Asunto(s)
Bosque Lluvioso , Árboles , Estaciones del Año , Suelo , XilemaRESUMEN
Increasing N deposition caused by intensive anthropogenic activities is expected to affect forest growth. However, the effects of N deposition on trees are still controversial due to the wide variability in results and experimental methods used. We conducted an experiment involving both canopy and understory N addition to investigate the effects of N-addition on intra-annual xylem formation of Chinese sweetgum (Liquidambar formosana) in a warm-temperate forest of Central China. Since 2013, 50 kg N ha-1 year-1 (2.5 times the current natural N deposition) was applied monthly from April to December. In 2014 and 2015, the timing and dynamics of xylem formation were monitored weekly during March-December by microcoring the stems of control and treated trees. Similar dynamics of wood formation were observed between canopy and understory N addition. Xylem formation of all the experimental trees started in March and lasted for 119-292 days. Compared to the control, no change was observed in the timing and dynamics of wood formation in N-treated trees. Tree ring-width ranged between 1701 and 4774 µm, with a rate of xylem production of 10.52-26.64 µm day-1. The radial growth of trees was not modified by the treatments. Our findings suggest that short-term N addition is unable to affect the dynamics of xylem formation in Chinese sweetgum in Central China. The effects of N on tree growth observed in previous studies might be related to the duration of the experiment or the imbalance between the amount of natural deposition and N added during treatments.
RESUMEN
In recent decades, anthropogenic activities have increased nitrogen (N) deposition in terrestrial ecosystems. This higher availability of N is expected to impact plant growth. However, the effects of N deposition on tree growth remain inconclusive due to the wide variability of experimental methods used. This study aimed to test the effect of short-term N addition on the intra-annual wood formation of Chinese red pine (Pinus massoniana Lamb.) in a warm-temperate forest of Central China. From 2013, solution containing 25 kg N ha-1 year-1 was applied monthly to the understory of experimental plots from April to December to double the current natural N deposition. Each week from March to December in 2014 and 2015, cambial activity and the timings and dynamics of xylem formation were monitored by collecting microcores from stems. Xylem formation lasted from March to November, producing an average of 19 and 33 cells for all studied trees in 2014 and 2015, respectively. No difference in xylem cell production was observed between control and N-treated trees. Moreover, N-treated trees had similar timings, rates and durations of xylem formation as control trees. These findings indicated that short-term N addition was unable to affect timings and dynamics of xylem formation in Chinese red pine of warm-temperate forest.
Asunto(s)
Nitrógeno/metabolismo , Pinus/crecimiento & desarrollo , Madera/crecimiento & desarrollo , China , Estaciones del Año , Xilema/crecimiento & desarrolloRESUMEN
BACKGROUND: The dynamics of cambial activity and xylogenesis provide information on how and to what extent wood formation respond to climatic variability. The Lebanon Cedar (Cedrus libani A.Rich) is a montane tree species which is distributed along a wide altitudinal range in the northeastern Mediterranean region, currently considered as a potential forest species for Central Europe with respect to climate change. This study provides first data on intra-annual growth dynamics at cellular level using the microcore technique for a montane Mediterranean tree species at different altitudes within and outside its natural range. RESULTS: Microcores were collected fortnightly in the growing season of 2013 in order to study temporal dynamics of cambial activity and xylogenesis in stems of C. libani at different altitudes in the Taurus Mountains (1000 - 2000 m a.s.l.) and at a plantation at Bayreuth (330 m a.s.l.; Germany). The dormant cambium consisted of about 5 cells at the Turkish sites and 7 cells at Bayreuth. Cambial activity set in, when daily minimum temperatures exceeded 0 °C and daily means of air and stem temperature exceeded 5 °C. Xylogenesis started between April and May, ended approximately the end of September to the beginning of October and lasted 134 (at tree line) to 174 days (at the lowest Turkish site). Mean ring widths varied from 0.55 to 3.35 mm, with highest values observed at Bayreuth very likely resulting from a steady water supply during growing season. Means of daily cell production rates varied from 0.73 to 0.12. Samples containing traumatic resin ducts occurred only rarely and where not used for analysis. CONCLUSIONS: In C. libani, onset and dynamics of cambial activity and xylogenesis are triggered by daily means of stem and air temperatures whereas water availability has a higher influence on growth rates and cessation of wood formation. Within sites, duration of xylogenesis does not significantly differ with respect to age and tree size. C. libani grows well outside its natural range and thus may be a promising species for forestation in Central Europe with respect to climate change. We suggest further studies on if/how traumatic resin ducts influence tree ring width.