RESUMEN
Septic lung damage is associated with endothelial cell and neutrophil activation. This study examines the role of the E3 ubiquitin ligase midline 1 (Mid1) in abdominal sepsis. Mid1 expression was increased in endothelial cells derived from post-capillary venules in septic mice and TNF-α challenge increased Mid1 levels in endothelial cells in vitro. The siRNA-mediated knockdown of Mid1 decreased TNF-α-induced upregulation of ICAM-1 and neutrophil adhesion to endothelial cells. Moreover, Mid1 silencing reduced leukocyte adhesion in post-capillary venules in septic lungs in vivo. The silencing of Mid1 not only decreased Mid1 expression but also attenuated expression of ICAM-1 in lungs from septic mice. Lastly, TNF-α stimulation decreased PP2Ac levels in endothelial cells in vitro, which was reversed in endothelial cells pretreated with siRNA directed against Mid1. Thus, our novel data show that Mid1 is an important regulator of ICAM-1 expression and neutrophil adhesion in vitro and septic lung injury in vivo. A possible target of Mid1 is PP2Ac in endothelial cells. Targeting the Mid1-PP2Ac axis may be a useful way to reduce pathological lung inflammation in abdominal sepsis.
Asunto(s)
Enfermedades Gastrointestinales , Molécula 1 de Adhesión Intercelular , Sepsis , Ubiquitina-Proteína Ligasas , Animales , Ratones , Adhesión Celular , Células Endoteliales/metabolismo , Enfermedades Gastrointestinales/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Pulmón/metabolismo , Neutrófilos/metabolismo , ARN Interferente Pequeño/genética , Sepsis/genética , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Rac signaling impacts a relatively large number of downstream targets; however, few studies have established an association between Rac pathways and pathological conditions. In the present study, we generated mice with double knockout of Rac1 and Rac3 (Atoh1-Cre;Rac1flox/flox;Rac3-/- ) in cerebellar granule neurons (CGNs). We observed impaired tangential migration at E16.5, as well as numerous apoptotic CGNs at the deepest layer of the external granule layer (EGL) in the medial cerebellum of Atoh1-Cre;Rac1flox/flox;Rac3-/- mice at P8. Atoh1-Cre;Rac1flox/flox;Rac3-/- CGNs differentiated normally until expression of p27kip1 and NeuN in the deep EGL at P5. Primary CGNs and cerebellar microexplants from Atoh1-Cre;Rac1flox/flox;Rac3-/- mice exhibited impaired neuritogenesis, which was more apparent in Map2-positive dendrites. Such findings suggest that impaired tangential migration and final differentiation of CGNs have resulted in decreased cerebellum size and agenesis of the medial internal granule layer, respectively. Furthermore, Rac depleted/deleted cells exhibited decreased levels of Mid1 and impaired mTORC1 signaling. Mid1 depletion in CGNs produced mild impairments in neuritogenesis and reductions in mTORC1 signaling. Thus, a novel Rac-signaling pathway (Rac1-Mid1-mTORC1) may be involved in medial cerebellar development.
Asunto(s)
Cerebelo/embriología , Proteínas/fisiología , Proteínas de Unión al GTP rac/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Cerebelo/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/fisiología , Neurogénesis/genética , Organogénesis/genética , Proteínas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/fisiología , Ubiquitina-Proteína Ligasas , Proteínas de Unión al GTP rac/genéticaRESUMEN
BACKGROUND: Eosinophilic esophagitis (EoE) is an inflammatory disorder of the esophagus defined by eosinophil infiltration and tissue remodeling with resulting symptoms of esophageal dysfunction. TNF-related apoptosis-inducing ligand (TRAIL) promotes inflammation through upregulation of the E3 ubiquitin-ligase midline-1 (MID1), which binds to and deactivates the catalytic subunit of protein phosphatase 2Ac, resulting in increased nuclear factor κB activation. OBJECTIVE: We sought to elucidate the role of TRAIL in EoE. METHODS: We used Aspergillus fumigatus to induce EoE in TRAIL-sufficient (wild-type) and TRAIL-deficient (TRAIL(-/-)) mice and targeted MID1 in the esophagus with small interfering RNA. We also treated mice with recombinant thymic stromal lymphopoietin (TSLP) and TRAIL. RESULTS: TRAIL deficiency and MID1 silencing with small interfering RNA reduced esophageal eosinophil and mast cell numbers and protected against esophageal circumference enlargement, muscularis externa thickening, and collagen deposition. MID1 expression and nuclear factor κB activation were reduced in TRAIL(-/-) mice, whereas protein phosphatase 2Ac levels were increased compared with those seen in wild-type control mice. This was associated with reduced expression of CCL24, CCL11, CCL20, IL-5, IL-13, IL-25, TGFB, and TSLP. Treatment with TSLP reconstituted hallmark features of EoE in TRAIL(-/-) mice and recombinant TRAIL induced esophageal TSLP expression in vivo in the absence of allergen. Post hoc analysis of gene array data demonstrated significant upregulation of TRAIL and MID1 in a cohort of children with EoE compared with that seen in controls. CONCLUSION: TRAIL regulates MID1 and TSLP, inflammation, fibrosis, smooth muscle hypertrophy, and expression of inflammatory effector chemokines and cytokines in experimental EoE.
Asunto(s)
Citocinas/metabolismo , Esofagitis Eosinofílica/inmunología , Esófago/fisiología , Proteínas/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Aspergillus fumigatus/inmunología , Movimiento Celular/genética , Células Cultivadas , Niño , Colágeno/metabolismo , Citocinas/genética , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Esófago/microbiología , Esófago/patología , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Modelos Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas/genética , ARN Interferente Pequeño/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ubiquitina-Proteína Ligasas , Linfopoyetina del Estroma TímicoRESUMEN
Midline 1 (MID1) is a microtubule-associated ubiquitin ligase that regulates protein phosphatase 2A activity. Loss-of-function mutations in MID1 lead to the X-linked Opitz G/BBB syndrome characterized by defective midline development during embryogenesis. Here, we show that MID1 is strongly upregulated in murine cytotoxic lymphocytes (CTLs), and that it controls TCR signaling, centrosome trafficking, and exocytosis of lytic granules. In accordance, we find that the killing capacity of MID1(-/-) CTLs is impaired. Transfection of MID1 into MID1(-/-) CTLs completely rescued lytic granule exocytosis, and vice versa, knockdown of MID1 inhibited exocytosis of lytic granules in WT CTLs, cementing a central role for MID1 in the regulation of granule exocytosis. Thus, MID1 orchestrates multiple events in CTL responses, adding a novel level of regulation to CTL activation and cytotoxicity.
Asunto(s)
Citotoxicidad Inmunológica/inmunología , Exocitosis/fisiología , Proteínas/inmunología , Vesículas Secretoras/metabolismo , Linfocitos T Citotóxicos/inmunología , Animales , Western Blotting , Citometría de Flujo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vesículas Secretoras/inmunología , Linfocitos T Citotóxicos/metabolismo , Ubiquitina-Proteína LigasasRESUMEN
T cells play a crucial role in atherosclerosis, with its infiltration preceding the formation of atheroma. However, how T-cell infiltration is regulated in atherosclerosis remains largely unknown. Here, this work demonstrates that dipeptidyl peptidase-4 (DPP4) is a novel regulator of T-cell motility in atherosclerosis. Single-cell ribonucleic acid (RNA) sequencing and flow cytometry show that CD4+ T cells in atherosclerotic patients display a marked increase of DPP4. Lack of DPP4 in hematopoietic cells or T cells reduces T-cell infiltration and atherosclerotic plaque volume in atherosclerosis mouse models. Mechanistically, DPP4 deficiency reduces T-cell motility by suppressing the expression of microtubule associated protein midline-1 (Mid1) in T cells. Deletion of either DPP4 or Mid1 inhibits chemokine-induced shape change and motility, while restitution of Mid1 in Dpp4-/- T cell largely restores its migratory ability. Thus, DPP4/Mid1, as a novel regulator of T-cell motility, may be a potential inflammatory target in atherosclerosis.
Asunto(s)
Aterosclerosis , Inhibidores de la Dipeptidil-Peptidasa IV , Placa Aterosclerótica , Animales , Ratones , Dipeptidil Peptidasa 4/genética , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Linfocitos T/metabolismoRESUMEN
Introduction: Eosinophilic esophagitis (EoE) is associated with allergen-driven inflammation of the esophagus and an upregulated Th2 cytokine signature. Recombinant interleukin (IL)-13 (rIL-13) administration to mice induces some of the hallmark features of EoE, including increased eotaxin expression and eosinophil recruitment. Inflammation in EoE has previously been shown to depend on the expression of TRAIL and MID-1, which reduced protein phosphatase 2A (PP2A) activity. The relationship between IL-13 and TRAIL signalling in esophageal eosinophilia is currently unknown. Objective: To investigate the interaction between IL-13-driven eosinophil infiltration and TRAIL or MID-1 in the esophagus. Method: We administered rIL-13 to wild type (WT), TRAIL-deficient (Tnsf10-/-) or STAT6-deficient (STAT6-/-) mice and targeted MID-1 with small interfering RNA. Results: rIL-13 administration to mice increased TRAIL and MID-1 expression in the esophagus while reducing PP2A activity. TRAIL deficient, but not STAT6 deficient mice demonstrated increased MID-1 expression and PP2A reduction upon IL-13 challenge which correlated with eosinophil infiltration into the esophagus. Silencing MID-1 expression with siRNA completely ablated IL-13 induced eosinophil infiltration of the esophagus, restored PP2A activity, and reduced eotaxin-1 expression. Conclusion: IL-13-driven eosinophil infiltration of the esophagus induced eosinophilia and eotaxin-1 expression in a STAT6-dependent and MID-1-dependent manner. This study highlights a novel mechanism employed by IL-13 to perpetuate eosinophil infiltration.
RESUMEN
OBJECTIVES: Eosinophilic oesophagitis (EoE) is characterised by oesophageal inflammation, fibrosis and dysfunction. Micro (mi)-RNAs interfere with pro-inflammatory and pro-fibrotic transcriptional programs, and miR-223 was upregulated in oesophageal mucosal biopsy specimens from EoE patients. The therapeutic potential of modulating miR-223 expression in vivo has not been determined. We aimed to elucidate the relevance of oesophageal miR-223 expression in an in vivo model of EoE by inhibiting miR-223 tissue expression. METHODS: The expression of miR-223 and the validated miR-223 target insulin-like growth factor receptor 1 (IGF1R) protein was determined in our paediatric cohort of EoE patients. A murine model of Aspergillus fumigatus-induced EoE was employed, and oesophagi were assessed for miR-233, IGF1R, T lymphocyte type 2 (T2) cytokine expression and eosinophil infiltration. Mice were treated with antagomirs targeting miR-223 or resveratrol targeting its upstream regulator Midline-1(MID-1). RESULTS: There was an inverse relationship between an increased expression of miR-223 and a decreased IGF1R protein concentration in biopsy specimens from EoE patients. TNF-related apoptosis-inducing ligand deficiency, MID-1 inhibition and resveratrol treatment suppressed miR-223 expression. Furthermore, inhibition of miR-223 and treatment with resveratrol in the oesophagus resulted in an amelioration of EoE hallmark features including eosinophilic infiltration, oesophageal circumference and a reduction in T2 cytokine expression. CONCLUSION: miR-223 has a key role in the perpetuation of EoE hallmark features downstream of TNF-related apoptosis-inducing ligand and MID-1 in an experimental model. These studies highlight a potentially critical role of miRNA function in EoE aetiology. miR-223 expression in the oesophagus may be therapeutically modulated by resveratrol, providing a potential new therapeutic option to be explored in EoE patients for this increasingly prevalent condition.
RESUMEN
Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism.
Asunto(s)
Giro Dentado/metabolismo , Proteínas Hedgehog/metabolismo , Hipotiroidismo/metabolismo , Neurogénesis , Factores de Edad , Animales , Animales Recién Nacidos , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Hipotiroidismo/inducido químicamente , Hipotiroidismo/genética , Hipotiroidismo/fisiopatología , Inmunohistoquímica , Masculino , Metimazol , Neuronas/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transcripción GenéticaRESUMEN
We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed that MID2, like MID1, is upregulated in activated murine T cells. Furthermore, MID1(-/-) CTL upregulated MID2 two-twenty-fold stronger than CTL from WT mice, suggesting that MID2 might compensate for MID1. In agreement, transfection of MID2 into MID1(-/-) CTL completely rescued exocytosis of lytic granules in MID1(-/-) CTL, and vice versa, knock-down of MID2 inhibited exocytosis of lytic granules in both WT and MID1(-/-) CTL, demonstrating that both MID1 and MID2 play a central role in the regulation of granule exocytosis and that functional redundancy exists between MID1 and MID2 in CTL.
Asunto(s)
Exocitosis , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Linfocitos T Citotóxicos/citología , Factores de Transcripción/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Interferón gamma/sangre , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas , Regulación hacia ArribaRESUMEN
Midline 1 (MID1) is a microtubule-associated ubiquitin ligase that regulates protein phosphatase 2 A levels. Loss-of-function mutations in MID1 lead to the human X-linked Opitz G/BBB (OS) syndrome characterized by defective midline development during embryogenesis. We have recently shown that MID1 is strongly up-regulated in murine cytotoxic T lymphocytes (CTLs), and that it has a significant impact on exocytosis of lytic granules and the killing capacity of CTLs. The aims of the present study were to determine the localization of MID1 in migrating CTLs, and to investigate whether MID1 affects CTL polarization and migration. We found that MID1 mainly localizes to the uropod of migrating CTLs and that it has a substantial impact on CTL polarization and migration in vitro. Furthermore, analysis of contact hypersensitivity responses supported that MID1 controls effector functions of CTLs in hapten-challenged skin in vivo. These results provide significant new knowledge on the role of MID1 in CTL biology.
RESUMEN
Downstream regulatory element antagonist modulator (DREAM) is a Ca(2+)-binding protein that binds DNA and represses transcription in a Ca(2+)-dependent manner. Previous work has shown a role for DREAM in cerebellar function regulating the expression of the sodium/calcium exchanger 3 (NCX3) in cerebellar granular neurons to control Ca(2+) homeostasis and survival of these neurons. To achieve a global view of the genes regulated by DREAM in the cerebellum, we performed a genome-wide analysis in transgenic cerebellum expressing a Ca(2+)-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Here we show that DREAM regulates the expression of the midline 1 (Mid1) gene early after birth. As a consequence, daDREAM mice exhibit a significant shortening of the rostro-caudal axis of the cerebellum and a delay in neuromotor development early after birth. Our results indicate a role for DREAM in cerebellar function.